TA_EC/main.py

140 lines
4.3 KiB
Python
Raw Normal View History

2025-03-04 04:55:40 +00:00
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import torchvision
import torchvision.transforms as transforms
# 设备配置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 超参数设置
num_epochs_teacher = 10 # 教师模型训练轮数
num_epochs_student = 20 # 学生模型训练轮数
batch_size = 64
learning_rate = 0.001
temperature = 5 # 蒸馏温度
alpha = 0.3 # 蒸馏损失权重
# 数据集准备示例使用CIFAR-10
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# 假设:
# 数据集A是CIFAR-10训练集的前25000张
# 数据集B是CIFAR-10训练集的后25000张
dataset_A = torchvision.datasets.CIFAR10(
root='./data', train=True, download=True, transform=transform)
dataset_A = torch.utils.data.Subset(dataset_A, range(25000))
dataset_B = torchvision.datasets.CIFAR10(
root='./data', train=True, download=True, transform=transform)
dataset_B = torch.utils.data.Subset(dataset_B, range(25000, 50000))
train_loader_A = DataLoader(dataset_A, batch_size=batch_size, shuffle=True)
train_loader_B = DataLoader(dataset_B, batch_size=batch_size, shuffle=True)
# 教师模型定义ResNet18
class TeacherModel(nn.Module):
def __init__(self):
super(TeacherModel, self).__init__()
self.resnet = torchvision.models.resnet18(pretrained=False)
self.resnet.fc = nn.Linear(512, 10) # CIFAR-10有10个类别
def forward(self, x):
return self.resnet(x)
# 学生模型定义更小的CNN
class StudentModel(nn.Module):
def __init__(self):
super(StudentModel, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 16, 3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(16, 32, 3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.classifier = nn.Sequential(
nn.Linear(32 * 8 * 8, 128),
nn.ReLU(),
nn.Linear(128, 10)
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
# 训练教师模型
teacher = TeacherModel().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(teacher.parameters(), lr=learning_rate)
print("Training Teacher Model...")
for epoch in range(num_epochs_teacher):
teacher.train()
for images, labels in train_loader_A:
images = images.to(device)
labels = labels.to(device)
outputs = teacher(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f"Teacher Epoch [{epoch+1}/{num_epochs_teacher}]")
# 知识蒸馏训练学生模型
student = StudentModel().to(device)
optimizer = optim.Adam(student.parameters(), lr=learning_rate)
criterion_hard = nn.CrossEntropyLoss()
criterion_soft = nn.KLDivLoss(reduction="batchmean")
print("\nDistilling Knowledge to Student...")
teacher.eval() # 设置教师模型为评估模式
for epoch in range(num_epochs_student):
student.train()
total_loss = 0
for images, labels in train_loader_B:
images = images.to(device)
labels = labels.to(device)
# 教师模型预测(不计算梯度)
with torch.no_grad():
teacher_logits = teacher(images)
# 学生模型预测
student_logits = student(images)
# 计算硬标签损失
hard_loss = criterion_hard(student_logits, labels)
# 计算软标签损失(带温度缩放)
soft_loss = criterion_soft(
nn.functional.log_softmax(student_logits / temperature, dim=1),
nn.functional.softmax(teacher_logits / temperature, dim=1)
) * (temperature ** 2) # 缩放梯度
# 组合损失
loss = alpha * hard_loss + (1 - alpha) * soft_loss
# 反向传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
avg_loss = total_loss / len(train_loader_B)
print(f"Student Epoch [{epoch+1}/{num_epochs_student}], Loss: {avg_loss:.4f}")
print("Knowledge distillation complete!")