TA_EC/dataset/recover.py

157 lines
5.3 KiB
Python
Raw Normal View History

2025-03-09 14:36:22 +00:00
import random
import cv2
import numpy as np
import os
# 假设我们有一个函数 `remove_background` 使用某种方法去背景,返回前景掩码和前景图像
def remove_background(image_path):
# 加载图像
source_image = cv2.imread(image_path)
# 这里可以使用一个预训练的模型去背景,比如 U2-Net。为了简化假设我们得到一个二值掩码
# 掩码生成逻辑可以替换为实际的模型推理
# 转换为灰度图像
GRAY = cv2.cvtColor(source_image, cv2.COLOR_BGR2GRAY)
# 二值化处理
_, mask_threshold = cv2.threshold(GRAY, 0, 1, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
# 定义结构元素
element = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))
# 膨胀和腐蚀操作
mask_dilate = cv2.dilate(mask_threshold, element)
mask_erode = cv2.erode(mask_dilate, element1)
# 计算非零像素数量
count2 = cv2.countNonZero(mask_erode)
# 查找轮廓
contours, hierarchy = cv2.findContours(mask_erode, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)
# 过滤轮廓
contours = [c for c in contours if cv2.contourArea(c) >= count2 * 0.3]
# 绘制轮廓
mask = np.zeros_like(mask_erode)
cv2.drawContours(mask, contours, -1, 1, -1)
# 将掩码转换为3通道
mask_cvtColor = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)
# 应用掩码
source_image_multiply = cv2.multiply(source_image, mask_cvtColor)
# 转换为HSV颜色空间
imgHSV = cv2.cvtColor(source_image_multiply, cv2.COLOR_BGR2HSV)
# 定义HSV范围
scalarL = np.array([0, 46, 46])
scalarH = np.array([45, 255, 255])
# 根据HSV范围生成掩码
mask_inRange = cv2.inRange(imgHSV, scalarL, scalarH)
# 二值化处理
_, mask_tthreshold = cv2.threshold(mask_inRange, 0, 1, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
# 中值滤波
mask_medianBlur = cv2.medianBlur(mask_tthreshold, 7)
# 将掩码转换为3通道
mask_scvtColor = cv2.cvtColor(mask_medianBlur, cv2.COLOR_GRAY2BGR)
# 应用掩码
source_image = cv2.multiply(source_image, mask_scvtColor)
return source_image
def synthesize_background(foreground, background):
# 创建前景掩膜(非黑色区域)
gray = cv2.cvtColor(foreground, cv2.COLOR_BGR2GRAY)
_, mask = cv2.threshold(gray, 1, 255, cv2.THRESH_BINARY) # 阈值设为1以保留所有非纯黑像素
mask = cv2.GaussianBlur(mask, (5,5), 0) # 高斯模糊柔化边缘
_, mask = cv2.threshold(mask, 200, 255, cv2.THRESH_BINARY) # 重新二值化
# 精准形态学处理
kernel = np.ones((2,2), np.uint8)
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=1) # 闭运算填充小孔
# 反转掩膜用于获取背景区域
mask_inv = cv2.bitwise_not(mask)
# 提取背景和前景的ROI区域
background_roi = cv2.bitwise_and(background, background, mask=mask_inv)
foreground_roi = cv2.bitwise_and(foreground, foreground, mask=mask)
# 合成图像
result = cv2.add(foreground_roi, background_roi)
return result
def edge_fill2(img):
(height, width, p) = img.shape
H = 2384
W = 1560
top = bottom=int((W - height) / 2)
left= right= int((H - width) / 2)
img_result = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=0)
return img_result
def process_images(input_folder, background_image_path, output_base):
"""
递归处理所有子文件夹并保持目录结构
"""
# 预处理背景路径(只需执行一次)
if os.path.isfile(background_image_path):
background_paths = [background_image_path]
else:
valid_ext = ['.jpg', '.jpeg', '.png', '.bmp', '.webp']
background_paths = [
os.path.join(background_image_path, f)
for f in os.listdir(background_image_path)
if os.path.splitext(f)[1].lower() in valid_ext
]
# 递归遍历输入目录
for root, dirs, files in os.walk(input_folder):
# 计算相对路径
relative_path = os.path.relpath(root, input_folder)
# 创建对应的输出目录
output_dir = os.path.join(output_base, relative_path)
os.makedirs(output_dir, exist_ok=True)
# 处理当前目录的文件
for filename in files:
input_path = os.path.join(root, filename)
output_path = os.path.join(output_dir, filename)
# 跳过非图像文件
if not filename.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp')):
continue
try:
# 去背景处理
foreground = remove_background(input_path)
result = edge_fill2(foreground)
# 保存结果
cv2.imwrite(output_path, result)
print(f"Processed: {input_path} -> {output_path}")
except Exception as e:
print(f"Error processing {input_path}: {str(e)}")
# 使用示例
input_directory = 'L:/Tobacco/2023_JY/20230821/SOURCE'
background_image_path = 'F:/dataset/02.TA_EC/rundata/BACKGROUND/ZY_B'
output_directory = 'L:/Test'
process_images(input_directory, background_image_path, output_directory)