TA_EC/FED.py

264 lines
9.1 KiB
Python
Raw Normal View History

2025-03-04 04:55:40 +00:00
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, Subset
import numpy as np
import copy
2025-03-09 14:36:22 +00:00
from tqdm import tqdm
from model.repvit import repvit_m1_1
from model.mobilenetv3 import MobileNetV3
2025-03-04 04:55:40 +00:00
# 配置参数
2025-03-11 15:12:34 +00:00
NUM_CLIENTS = 2
2025-03-04 04:55:40 +00:00
NUM_ROUNDS = 3
2025-03-09 14:36:22 +00:00
CLIENT_EPOCHS = 5
2025-03-04 04:55:40 +00:00
BATCH_SIZE = 32
TEMP = 2.0 # 蒸馏温度
# 设备配置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 数据准备
2025-03-11 15:12:34 +00:00
import os
from torchvision.datasets import ImageFolder
def prepare_data():
2025-03-09 14:36:22 +00:00
transform = transforms.Compose([
2025-03-11 15:12:34 +00:00
transforms.Resize((224, 224)),
transforms.ToTensor()
])
# Load datasets
dataset_A = ImageFolder(root='./dataset_A/train', transform=transform)
dataset_B = ImageFolder(root='./dataset_B/train', transform=transform)
dataset_C = ImageFolder(root='./dataset_C/train', transform=transform)
2025-03-04 04:55:40 +00:00
2025-03-11 15:12:34 +00:00
# Assign datasets to clients
client_datasets = [dataset_B, dataset_C]
2025-03-04 04:55:40 +00:00
2025-03-11 15:12:34 +00:00
# Server dataset (A) for public updates
public_loader = DataLoader(dataset_A, batch_size=BATCH_SIZE, shuffle=True)
return client_datasets, public_loader
2025-03-04 04:55:40 +00:00
# 客户端训练函数
def client_train(client_model, server_model, dataset):
client_model.train()
server_model.eval()
optimizer = torch.optim.SGD(client_model.parameters(), lr=0.1)
loader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
2025-03-09 14:36:22 +00:00
# 训练进度条
progress_bar = tqdm(total=CLIENT_EPOCHS*len(loader),
desc="Client Training",
unit="batch")
for epoch in range(CLIENT_EPOCHS):
epoch_loss = 0.0
task_loss = 0.0
distill_loss = 0.0
correct = 0
total = 0
for batch_idx, (data, target) in enumerate(loader):
2025-03-04 04:55:40 +00:00
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
2025-03-09 14:36:22 +00:00
# 前向传播
2025-03-04 04:55:40 +00:00
client_output = client_model(data)
2025-03-09 14:36:22 +00:00
# 获取教师模型输出
2025-03-04 04:55:40 +00:00
with torch.no_grad():
server_output = server_model(data)
2025-03-09 14:36:22 +00:00
# 计算损失
2025-03-04 04:55:40 +00:00
loss_task = F.cross_entropy(client_output, target)
loss_distill = F.kl_div(
F.log_softmax(client_output/TEMP, dim=1),
F.softmax(server_output/TEMP, dim=1),
reduction="batchmean"
) * (TEMP**2)
total_loss = loss_task + loss_distill
2025-03-09 14:36:22 +00:00
# 反向传播
2025-03-04 04:55:40 +00:00
total_loss.backward()
optimizer.step()
2025-03-09 14:36:22 +00:00
# 统计指标
epoch_loss += total_loss.item()
task_loss += loss_task.item()
distill_loss += loss_distill.item()
_, predicted = torch.max(client_output.data, 1)
correct += (predicted == target).sum().item()
total += target.size(0)
# 实时更新进度条
progress_bar.set_postfix({
"Epoch": f"{epoch+1}/{CLIENT_EPOCHS}",
"Batch": f"{batch_idx+1}/{len(loader)}",
"Loss": f"{total_loss.item():.4f}",
"Acc": f"{100*correct/total:.2f}%\n",
})
progress_bar.update(1)
# 每10个batch打印详细信息
if (batch_idx + 1) % 10 == 0:
progress_bar.write(f"\nEpoch {epoch+1} | Batch {batch_idx+1}")
progress_bar.write(f"Task Loss: {loss_task:.4f}")
progress_bar.write(f"Distill Loss: {loss_distill:.4f}")
progress_bar.write(f"Total Loss: {total_loss:.4f}")
progress_bar.write(f"Batch Accuracy: {100*correct/total:.2f}%\n")
# 每个epoch结束打印汇总信息
avg_loss = epoch_loss / len(loader)
avg_task = task_loss / len(loader)
avg_distill = distill_loss / len(loader)
epoch_acc = 100 * correct / total
print(f"\n{'='*40}")
print(f"Epoch {epoch+1} Summary:")
print(f"Average Loss: {avg_loss:.4f}")
print(f"Task Loss: {avg_task:.4f}")
print(f"Distill Loss: {avg_distill:.4f}")
print(f"Training Accuracy: {epoch_acc:.2f}%")
print(f"{'='*40}\n")
2025-03-04 04:55:40 +00:00
2025-03-09 14:36:22 +00:00
progress_bar.close()
2025-03-04 04:55:40 +00:00
return client_model.state_dict()
# 模型参数聚合FedAvg
def aggregate(client_params):
global_params = {}
for key in client_params[0].keys():
global_params[key] = torch.stack([param[key].float() for param in client_params]).mean(dim=0)
return global_params
# 服务器知识更新
def server_update(server_model, client_models, public_loader):
server_model.train()
optimizer = torch.optim.Adam(server_model.parameters(), lr=0.001)
2025-03-09 14:36:22 +00:00
total_loss = 0.0
progress_bar = tqdm(public_loader, desc="Server Updating", unit="batch")
for batch_idx, (data, _) in enumerate(progress_bar):
2025-03-04 04:55:40 +00:00
data = data.to(device)
optimizer.zero_grad()
# 获取客户端模型的平均输出
with torch.no_grad():
client_outputs = [model(data).mean(dim=0, keepdim=True) for model in client_models]
soft_targets = torch.stack(client_outputs).mean(dim=0)
# 蒸馏学习
server_output = server_model(data)
loss = F.kl_div(
F.log_softmax(server_output, dim=1),
F.softmax(soft_targets, dim=1),
reduction="batchmean"
)
2025-03-09 14:36:22 +00:00
# 反向传播
2025-03-04 04:55:40 +00:00
loss.backward()
optimizer.step()
2025-03-09 14:36:22 +00:00
# 更新统计信息
total_loss += loss.item()
progress_bar.set_postfix({
"Avg Loss": f"{total_loss/(batch_idx+1):.4f}",
"Current Loss": f"{loss.item():.4f}"
})
print(f"\nServer Update Complete | Average Loss: {total_loss/len(public_loader):.4f}\n")
2025-03-04 04:55:40 +00:00
def test_model(model, test_loader):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
_, predicted = torch.max(output.data, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
accuracy = 100 * correct / total
return accuracy
2025-03-09 14:36:22 +00:00
2025-03-04 04:55:40 +00:00
# 主训练流程
def main():
2025-03-11 15:12:34 +00:00
# Initialize models
2025-03-09 14:36:22 +00:00
global_server_model = repvit_m1_1(num_classes=10).to(device)
client_models = [MobileNetV3(n_class=10).to(device) for _ in range(NUM_CLIENTS)]
2025-03-04 04:55:40 +00:00
2025-03-11 15:12:34 +00:00
# Prepare data
client_datasets, public_loader = prepare_data()
2025-03-04 04:55:40 +00:00
2025-03-11 15:12:34 +00:00
# Test dataset (using dataset A's test set for simplicity)
test_dataset = ImageFolder(root='./dataset_A/test', transform=transform)
2025-03-09 14:36:22 +00:00
test_loader = DataLoader(test_dataset, batch_size=100, shuffle=False)
2025-03-11 15:12:34 +00:00
round_progress = tqdm(total=NUM_ROUNDS, desc="Federated Rounds", unit="round")
2025-03-04 04:55:40 +00:00
for round in range(NUM_ROUNDS):
2025-03-09 14:36:22 +00:00
print(f"\n{'#'*50}")
print(f"Federated Round {round+1}/{NUM_ROUNDS}")
print(f"{'#'*50}")
2025-03-11 15:12:34 +00:00
# Client selection (only 2 clients)
2025-03-09 14:36:22 +00:00
selected_clients = np.random.choice(NUM_CLIENTS, 2, replace=False)
print(f"Selected Clients: {selected_clients}")
2025-03-04 04:55:40 +00:00
2025-03-11 15:12:34 +00:00
# Client local training
2025-03-04 04:55:40 +00:00
client_params = []
for cid in selected_clients:
2025-03-09 14:36:22 +00:00
print(f"\nTraining Client {cid}")
2025-03-04 04:55:40 +00:00
local_model = copy.deepcopy(client_models[cid])
local_model.load_state_dict(client_models[cid].state_dict())
2025-03-09 14:36:22 +00:00
updated_params = client_train(local_model, global_server_model, client_datasets[cid])
2025-03-04 04:55:40 +00:00
client_params.append(updated_params)
2025-03-11 15:12:34 +00:00
# Model aggregation
2025-03-04 04:55:40 +00:00
global_client_params = aggregate(client_params)
for model in client_models:
model.load_state_dict(global_client_params)
2025-03-11 15:12:34 +00:00
# Server knowledge update
2025-03-09 14:36:22 +00:00
print("\nServer Updating...")
2025-03-04 04:55:40 +00:00
server_update(global_server_model, client_models, public_loader)
2025-03-11 15:12:34 +00:00
# Test model performance
2025-03-09 14:36:22 +00:00
server_acc = test_model(global_server_model, test_loader)
client_acc = test_model(client_models[0], test_loader)
print(f"\nRound {round+1} Performance:")
print(f"Global Model Accuracy: {server_acc:.2f}%")
print(f"Client Model Accuracy: {client_acc:.2f}%")
round_progress.update(1)
2025-03-04 04:55:40 +00:00
print(f"Round {round+1} completed")
print("Training completed!")
2025-03-11 15:12:34 +00:00
# Save trained models
2025-03-04 04:55:40 +00:00
torch.save(global_server_model.state_dict(), "server_model.pth")
torch.save(client_models[0].state_dict(), "client_model.pth")
print("Models saved successfully.")
2025-03-11 15:12:34 +00:00
# Test server model
2025-03-09 14:36:22 +00:00
server_model = repvit_m1_1(num_classes=10).to(device)
2025-03-04 04:55:40 +00:00
server_model.load_state_dict(torch.load("server_model.pth"))
server_acc = test_model(server_model, test_loader)
print(f"Server Model Test Accuracy: {server_acc:.2f}%")
2025-03-11 15:12:34 +00:00
# Test client model
2025-03-09 14:36:22 +00:00
client_model = MobileNetV3(n_class=10).to(device)
2025-03-04 04:55:40 +00:00
client_model.load_state_dict(torch.load("client_model.pth"))
client_acc = test_model(client_model, test_loader)
print(f"Client Model Test Accuracy: {client_acc:.2f}%")
if __name__ == "__main__":
main()