This commit is contained in:
yoiannis 2025-03-04 12:55:40 +08:00
parent ee7d8798af
commit 4051332732
3 changed files with 353 additions and 0 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
data

212
FED.py Normal file
View File

@ -0,0 +1,212 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, Subset
import numpy as np
import copy
# 配置参数
NUM_CLIENTS = 10
NUM_ROUNDS = 3
CLIENT_EPOCHS = 2
BATCH_SIZE = 32
TEMP = 2.0 # 蒸馏温度
# 设备配置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 定义中心大模型
class ServerModel(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(784, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 10)
def forward(self, x):
x = x.view(-1, 784)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)
# 定义端侧小模型
class ClientModel(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(784, 64)
self.fc2 = nn.Linear(64, 10)
def forward(self, x):
x = x.view(-1, 784)
x = F.relu(self.fc1(x))
return self.fc2(x)
# 数据准备
def prepare_data(num_clients):
transform = transforms.Compose([transforms.ToTensor()])
train_set = datasets.MNIST("./data", train=True, download=True, transform=transform)
# 非IID数据划分每个客户端2个类别
client_data = {i: [] for i in range(num_clients)}
labels = train_set.targets.numpy()
for label in range(10):
label_idx = np.where(labels == label)[0]
np.random.shuffle(label_idx)
split = np.array_split(label_idx, num_clients//2)
for i, idx in enumerate(split):
client_data[i*2 + label%2].extend(idx)
return [Subset(train_set, ids) for ids in client_data.values()]
# 客户端训练函数
def client_train(client_model, server_model, dataset):
client_model.train()
server_model.eval()
optimizer = torch.optim.SGD(client_model.parameters(), lr=0.1)
loader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
for _ in range(CLIENT_EPOCHS):
for data, target in loader:
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
# 获取小模型输出
client_output = client_model(data)
# 获取大模型输出(知识蒸馏)
with torch.no_grad():
server_output = server_model(data)
# 计算联合损失
loss_task = F.cross_entropy(client_output, target)
loss_distill = F.kl_div(
F.log_softmax(client_output/TEMP, dim=1),
F.softmax(server_output/TEMP, dim=1),
reduction="batchmean"
) * (TEMP**2)
total_loss = loss_task + loss_distill
total_loss.backward()
optimizer.step()
return client_model.state_dict()
# 模型参数聚合FedAvg
def aggregate(client_params):
global_params = {}
for key in client_params[0].keys():
global_params[key] = torch.stack([param[key].float() for param in client_params]).mean(dim=0)
return global_params
# 服务器知识更新
def server_update(server_model, client_models, public_loader):
server_model.train()
optimizer = torch.optim.Adam(server_model.parameters(), lr=0.001)
for data, _ in public_loader:
data = data.to(device)
optimizer.zero_grad()
# 获取客户端模型的平均输出
with torch.no_grad():
client_outputs = [model(data).mean(dim=0, keepdim=True) for model in client_models]
soft_targets = torch.stack(client_outputs).mean(dim=0)
# 蒸馏学习
server_output = server_model(data)
loss = F.kl_div(
F.log_softmax(server_output, dim=1),
F.softmax(soft_targets, dim=1),
reduction="batchmean"
)
loss.backward()
optimizer.step()
def test_model(model, test_loader):
model.eval()
correct = 0
total = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
_, predicted = torch.max(output.data, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
accuracy = 100 * correct / total
return accuracy
# 主训练流程
def main():
# 初始化模型
global_server_model = ServerModel().to(device)
client_models = [ClientModel().to(device) for _ in range(NUM_CLIENTS)]
# 准备数据
client_datasets = prepare_data(NUM_CLIENTS)
public_loader = DataLoader(
datasets.MNIST("./data", train=False, download=True,
transform=transforms.ToTensor()),
batch_size=100, shuffle=True)
for round in range(NUM_ROUNDS):
# 客户端选择
selected_clients = np.random.choice(NUM_CLIENTS, 5, replace=False)
# 客户端本地训练
client_params = []
for cid in selected_clients:
# 下载全局模型
local_model = copy.deepcopy(client_models[cid])
local_model.load_state_dict(client_models[cid].state_dict())
# 本地训练
updated_params = client_train(
local_model,
global_server_model,
client_datasets[cid]
)
client_params.append(updated_params)
# 模型聚合
global_client_params = aggregate(client_params)
for model in client_models:
model.load_state_dict(global_client_params)
# 服务器知识更新
server_update(global_server_model, client_models, public_loader)
print(f"Round {round+1} completed")
print("Training completed!")
# 保存训练好的模型
torch.save(global_server_model.state_dict(), "server_model.pth")
torch.save(client_models[0].state_dict(), "client_model.pth")
print("Models saved successfully.")
# 创建测试数据加载器
test_dataset = datasets.MNIST(
"./data",
train=False,
transform=transforms.ToTensor()
)
test_loader = DataLoader(test_dataset, batch_size=100, shuffle=False)
# 测试服务器模型
server_model = ServerModel().to(device)
server_model.load_state_dict(torch.load("server_model.pth"))
server_acc = test_model(server_model, test_loader)
print(f"Server Model Test Accuracy: {server_acc:.2f}%")
# 测试客户端模型
client_model = ClientModel().to(device)
client_model.load_state_dict(torch.load("client_model.pth"))
client_acc = test_model(client_model, test_loader)
print(f"Client Model Test Accuracy: {client_acc:.2f}%")
if __name__ == "__main__":
main()

140
main.py
View File

@ -0,0 +1,140 @@
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import torchvision
import torchvision.transforms as transforms
# 设备配置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 超参数设置
num_epochs_teacher = 10 # 教师模型训练轮数
num_epochs_student = 20 # 学生模型训练轮数
batch_size = 64
learning_rate = 0.001
temperature = 5 # 蒸馏温度
alpha = 0.3 # 蒸馏损失权重
# 数据集准备示例使用CIFAR-10
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# 假设:
# 数据集A是CIFAR-10训练集的前25000张
# 数据集B是CIFAR-10训练集的后25000张
dataset_A = torchvision.datasets.CIFAR10(
root='./data', train=True, download=True, transform=transform)
dataset_A = torch.utils.data.Subset(dataset_A, range(25000))
dataset_B = torchvision.datasets.CIFAR10(
root='./data', train=True, download=True, transform=transform)
dataset_B = torch.utils.data.Subset(dataset_B, range(25000, 50000))
train_loader_A = DataLoader(dataset_A, batch_size=batch_size, shuffle=True)
train_loader_B = DataLoader(dataset_B, batch_size=batch_size, shuffle=True)
# 教师模型定义ResNet18
class TeacherModel(nn.Module):
def __init__(self):
super(TeacherModel, self).__init__()
self.resnet = torchvision.models.resnet18(pretrained=False)
self.resnet.fc = nn.Linear(512, 10) # CIFAR-10有10个类别
def forward(self, x):
return self.resnet(x)
# 学生模型定义更小的CNN
class StudentModel(nn.Module):
def __init__(self):
super(StudentModel, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 16, 3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(16, 32, 3, padding=1),
nn.ReLU(),
nn.MaxPool2d(2)
)
self.classifier = nn.Sequential(
nn.Linear(32 * 8 * 8, 128),
nn.ReLU(),
nn.Linear(128, 10)
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
# 训练教师模型
teacher = TeacherModel().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(teacher.parameters(), lr=learning_rate)
print("Training Teacher Model...")
for epoch in range(num_epochs_teacher):
teacher.train()
for images, labels in train_loader_A:
images = images.to(device)
labels = labels.to(device)
outputs = teacher(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f"Teacher Epoch [{epoch+1}/{num_epochs_teacher}]")
# 知识蒸馏训练学生模型
student = StudentModel().to(device)
optimizer = optim.Adam(student.parameters(), lr=learning_rate)
criterion_hard = nn.CrossEntropyLoss()
criterion_soft = nn.KLDivLoss(reduction="batchmean")
print("\nDistilling Knowledge to Student...")
teacher.eval() # 设置教师模型为评估模式
for epoch in range(num_epochs_student):
student.train()
total_loss = 0
for images, labels in train_loader_B:
images = images.to(device)
labels = labels.to(device)
# 教师模型预测(不计算梯度)
with torch.no_grad():
teacher_logits = teacher(images)
# 学生模型预测
student_logits = student(images)
# 计算硬标签损失
hard_loss = criterion_hard(student_logits, labels)
# 计算软标签损失(带温度缩放)
soft_loss = criterion_soft(
nn.functional.log_softmax(student_logits / temperature, dim=1),
nn.functional.softmax(teacher_logits / temperature, dim=1)
) * (temperature ** 2) # 缩放梯度
# 组合损失
loss = alpha * hard_loss + (1 - alpha) * soft_loss
# 反向传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
avg_loss = total_loss / len(train_loader_B)
print(f"Student Epoch [{epoch+1}/{num_epochs_student}], Loss: {avg_loss:.4f}")
print("Knowledge distillation complete!")