import torch import torch.nn as nn import torch.nn.functional as F from torchvision import datasets, transforms from torch.utils.data import DataLoader, Subset import numpy as np import copy from tqdm import tqdm from model.repvit import repvit_m1_1 from model.mobilenetv3 import MobileNetV3 # 配置参数 NUM_CLIENTS = 4 NUM_ROUNDS = 3 CLIENT_EPOCHS = 5 BATCH_SIZE = 32 TEMP = 2.0 # 蒸馏温度 # 设备配置 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 数据准备 def prepare_data(num_clients): transform = transforms.Compose([ transforms.Resize((224, 224)), # 将图像调整为 224x224 transforms.Grayscale(num_output_channels=3), transforms.ToTensor() ]) train_set = datasets.MNIST("./data", train=True, download=True, transform=transform) # 非IID数据划分(每个客户端2个类别) client_data = {i: [] for i in range(num_clients)} labels = train_set.targets.numpy() for label in range(10): label_idx = np.where(labels == label)[0] np.random.shuffle(label_idx) split = np.array_split(label_idx, num_clients//2) for i, idx in enumerate(split): client_data[i*2 + label%2].extend(idx) return [Subset(train_set, ids) for ids in client_data.values()] # 客户端训练函数 def client_train(client_model, server_model, dataset): client_model.train() server_model.eval() optimizer = torch.optim.SGD(client_model.parameters(), lr=0.1) loader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True) # 训练进度条 progress_bar = tqdm(total=CLIENT_EPOCHS*len(loader), desc="Client Training", unit="batch") for epoch in range(CLIENT_EPOCHS): epoch_loss = 0.0 task_loss = 0.0 distill_loss = 0.0 correct = 0 total = 0 for batch_idx, (data, target) in enumerate(loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() # 前向传播 client_output = client_model(data) # 获取教师模型输出 with torch.no_grad(): server_output = server_model(data) # 计算损失 loss_task = F.cross_entropy(client_output, target) loss_distill = F.kl_div( F.log_softmax(client_output/TEMP, dim=1), F.softmax(server_output/TEMP, dim=1), reduction="batchmean" ) * (TEMP**2) total_loss = loss_task + loss_distill # 反向传播 total_loss.backward() optimizer.step() # 统计指标 epoch_loss += total_loss.item() task_loss += loss_task.item() distill_loss += loss_distill.item() _, predicted = torch.max(client_output.data, 1) correct += (predicted == target).sum().item() total += target.size(0) # 实时更新进度条 progress_bar.set_postfix({ "Epoch": f"{epoch+1}/{CLIENT_EPOCHS}", "Batch": f"{batch_idx+1}/{len(loader)}", "Loss": f"{total_loss.item():.4f}", "Acc": f"{100*correct/total:.2f}%\n", }) progress_bar.update(1) # 每10个batch打印详细信息 if (batch_idx + 1) % 10 == 0: progress_bar.write(f"\nEpoch {epoch+1} | Batch {batch_idx+1}") progress_bar.write(f"Task Loss: {loss_task:.4f}") progress_bar.write(f"Distill Loss: {loss_distill:.4f}") progress_bar.write(f"Total Loss: {total_loss:.4f}") progress_bar.write(f"Batch Accuracy: {100*correct/total:.2f}%\n") # 每个epoch结束打印汇总信息 avg_loss = epoch_loss / len(loader) avg_task = task_loss / len(loader) avg_distill = distill_loss / len(loader) epoch_acc = 100 * correct / total print(f"\n{'='*40}") print(f"Epoch {epoch+1} Summary:") print(f"Average Loss: {avg_loss:.4f}") print(f"Task Loss: {avg_task:.4f}") print(f"Distill Loss: {avg_distill:.4f}") print(f"Training Accuracy: {epoch_acc:.2f}%") print(f"{'='*40}\n") progress_bar.close() return client_model.state_dict() # 模型参数聚合(FedAvg) def aggregate(client_params): global_params = {} for key in client_params[0].keys(): global_params[key] = torch.stack([param[key].float() for param in client_params]).mean(dim=0) return global_params # 服务器知识更新 def server_update(server_model, client_models, public_loader): server_model.train() optimizer = torch.optim.Adam(server_model.parameters(), lr=0.001) total_loss = 0.0 progress_bar = tqdm(public_loader, desc="Server Updating", unit="batch") for batch_idx, (data, _) in enumerate(progress_bar): data = data.to(device) optimizer.zero_grad() # 获取客户端模型的平均输出 with torch.no_grad(): client_outputs = [model(data).mean(dim=0, keepdim=True) for model in client_models] soft_targets = torch.stack(client_outputs).mean(dim=0) # 蒸馏学习 server_output = server_model(data) loss = F.kl_div( F.log_softmax(server_output, dim=1), F.softmax(soft_targets, dim=1), reduction="batchmean" ) # 反向传播 loss.backward() optimizer.step() # 更新统计信息 total_loss += loss.item() progress_bar.set_postfix({ "Avg Loss": f"{total_loss/(batch_idx+1):.4f}", "Current Loss": f"{loss.item():.4f}" }) print(f"\nServer Update Complete | Average Loss: {total_loss/len(public_loader):.4f}\n") def test_model(model, test_loader): model.eval() correct = 0 total = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) _, predicted = torch.max(output.data, 1) total += target.size(0) correct += (predicted == target).sum().item() accuracy = 100 * correct / total return accuracy # 主训练流程 def main(): # 初始化模型 global_server_model = repvit_m1_1(num_classes=10).to(device) client_models = [MobileNetV3(n_class=10).to(device) for _ in range(NUM_CLIENTS)] round_progress = tqdm(total=NUM_ROUNDS, desc="Federated Rounds", unit="round") # 准备数据 client_datasets = prepare_data(NUM_CLIENTS) public_loader = DataLoader( datasets.MNIST("./data", train=False, download=True, transform= transforms.Compose([ transforms.Resize((224, 224)), # 将图像调整为 224x224 transforms.Grayscale(num_output_channels=3), transforms.ToTensor() # 将图像转换为张量 ])), batch_size=100, shuffle=True) test_dataset = datasets.MNIST( "./data", train=False, transform= transforms.Compose([ transforms.Resize((224, 224)), # 将图像调整为 224x224 transforms.Grayscale(num_output_channels=3), transforms.ToTensor() # 将图像转换为张量 ]) ) test_loader = DataLoader(test_dataset, batch_size=100, shuffle=False) for round in range(NUM_ROUNDS): print(f"\n{'#'*50}") print(f"Federated Round {round+1}/{NUM_ROUNDS}") print(f"{'#'*50}") # 客户端选择 selected_clients = np.random.choice(NUM_CLIENTS, 2, replace=False) print(f"Selected Clients: {selected_clients}") # 客户端本地训练 client_params = [] for cid in selected_clients: print(f"\nTraining Client {cid}") local_model = copy.deepcopy(client_models[cid]) local_model.load_state_dict(client_models[cid].state_dict()) updated_params = client_train(local_model, global_server_model, client_datasets[cid]) client_params.append(updated_params) # 模型聚合 global_client_params = aggregate(client_params) for model in client_models: model.load_state_dict(global_client_params) # 服务器知识更新 print("\nServer Updating...") server_update(global_server_model, client_models, public_loader) # 测试模型性能 server_acc = test_model(global_server_model, test_loader) client_acc = test_model(client_models[0], test_loader) print(f"\nRound {round+1} Performance:") print(f"Global Model Accuracy: {server_acc:.2f}%") print(f"Client Model Accuracy: {client_acc:.2f}%") round_progress.update(1) print(f"Round {round+1} completed") print("Training completed!") # 保存训练好的模型 torch.save(global_server_model.state_dict(), "server_model.pth") torch.save(client_models[0].state_dict(), "client_model.pth") print("Models saved successfully.") # 创建测试数据加载器 # 测试服务器模型 server_model = repvit_m1_1(num_classes=10).to(device) server_model.load_state_dict(torch.load("server_model.pth")) server_acc = test_model(server_model, test_loader) print(f"Server Model Test Accuracy: {server_acc:.2f}%") # 测试客户端模型 client_model = MobileNetV3(n_class=10).to(device) client_model.load_state_dict(torch.load("client_model.pth")) client_acc = test_model(client_model, test_loader) print(f"Client Model Test Accuracy: {client_acc:.2f}%") if __name__ == "__main__": main()