import random import cv2 import numpy as np import os # 假设我们有一个函数 `remove_background` 使用某种方法去背景,返回前景掩码和前景图像 def remove_background(image_path): # 加载图像 source_image = cv2.imread(image_path) # 这里可以使用一个预训练的模型去背景,比如 U2-Net。为了简化,假设我们得到一个二值掩码 # 掩码生成逻辑可以替换为实际的模型推理 # 转换为灰度图像 GRAY = cv2.cvtColor(source_image, cv2.COLOR_BGR2GRAY) # 二值化处理 _, mask_threshold = cv2.threshold(GRAY, 0, 1, cv2.THRESH_BINARY | cv2.THRESH_OTSU) # 定义结构元素 element = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2)) # 膨胀和腐蚀操作 mask_dilate = cv2.dilate(mask_threshold, element) mask_erode = cv2.erode(mask_dilate, element1) # 计算非零像素数量 count2 = cv2.countNonZero(mask_erode) # 查找轮廓 contours, hierarchy = cv2.findContours(mask_erode, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS) # 过滤轮廓 contours = [c for c in contours if cv2.contourArea(c) >= count2 * 0.3] # 绘制轮廓 mask = np.zeros_like(mask_erode) cv2.drawContours(mask, contours, -1, 1, -1) # 将掩码转换为3通道 mask_cvtColor = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR) # 应用掩码 source_image_multiply = cv2.multiply(source_image, mask_cvtColor) # 转换为HSV颜色空间 imgHSV = cv2.cvtColor(source_image_multiply, cv2.COLOR_BGR2HSV) # 定义HSV范围 scalarL = np.array([0, 46, 46]) scalarH = np.array([45, 255, 255]) # 根据HSV范围生成掩码 mask_inRange = cv2.inRange(imgHSV, scalarL, scalarH) # 二值化处理 _, mask_tthreshold = cv2.threshold(mask_inRange, 0, 1, cv2.THRESH_BINARY | cv2.THRESH_OTSU) # 中值滤波 mask_medianBlur = cv2.medianBlur(mask_tthreshold, 7) # 将掩码转换为3通道 mask_scvtColor = cv2.cvtColor(mask_medianBlur, cv2.COLOR_GRAY2BGR) # 应用掩码 source_image = cv2.multiply(source_image, mask_scvtColor) return source_image def synthesize_background(foreground, background_image_path): # 验证输入路径有效性 if not os.path.exists(background_image_path): raise FileNotFoundError(f"指定的背景路径不存在: {background_image_path}") # 获取所有可用背景图像路径 background_paths = [] if os.path.isfile(background_image_path): # 如果是单个图像文件 background_paths = [background_image_path] elif os.path.isdir(background_image_path): # 如果是目录,搜索常见图像格式 valid_extensions = ['.jpg', '.jpeg', '.png', '.bmp', '.webp'] for filename in os.listdir(background_image_path): if os.path.splitext(filename)[1].lower() in valid_extensions: background_paths.append(os.path.join(background_image_path, filename)) # 验证找到的图像文件数量 if not background_paths: raise ValueError(f"目录中未找到支持的图像文件: {background_image_path}") # 随机选择背景图像 selected_bg_path = random.choice(background_paths) # 加载并验证背景图像 background = cv2.imread(selected_bg_path) # 调整背景大小与前景一致 background = cv2.resize(background, (foreground.shape[1], foreground.shape[0])) # 创建前景掩膜(非黑色区域) gray = cv2.cvtColor(foreground, cv2.COLOR_BGR2GRAY) _, mask = cv2.threshold(gray, 1, 255, cv2.THRESH_BINARY) # 阈值设为1以保留所有非纯黑像素 mask = cv2.GaussianBlur(mask, (5,5), 0) # 高斯模糊柔化边缘 _, mask = cv2.threshold(mask, 200, 255, cv2.THRESH_BINARY) # 重新二值化 # 精准形态学处理 kernel = np.ones((2,2), np.uint8) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=1) # 闭运算填充小孔 # 反转掩膜用于获取背景区域 mask_inv = cv2.bitwise_not(mask) # 提取背景和前景的ROI区域 background_roi = cv2.bitwise_and(background, background, mask=mask_inv) foreground_roi = cv2.bitwise_and(foreground, foreground, mask=mask) # 合成图像 result = cv2.add(foreground_roi, background_roi) # 保存结果 return result def process_images(input_folder, background_image_path, output_base): """ 递归处理所有子文件夹并保持目录结构 """ # 预处理背景路径(只需执行一次) if os.path.isfile(background_image_path): background_paths = [background_image_path] else: valid_ext = ['.jpg', '.jpeg', '.png', '.bmp', '.webp'] background_paths = [ os.path.join(background_image_path, f) for f in os.listdir(background_image_path) if os.path.splitext(f)[1].lower() in valid_ext ] # 递归遍历输入目录 for root, dirs, files in os.walk(input_folder): # 计算相对路径 relative_path = os.path.relpath(root, input_folder) # 创建对应的输出目录 output_dir = os.path.join(output_base, relative_path) os.makedirs(output_dir, exist_ok=True) # 处理当前目录的文件 for filename in files: input_path = os.path.join(root, filename) output_path = os.path.join(output_dir, filename) # 跳过非图像文件 if not filename.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp')): continue try: # 去背景处理 foreground = remove_background(input_path) # 随机选择背景(每次处理都重新选择) bg_path = random.choice(background_paths) background = cv2.imread(bg_path) # 调整背景尺寸 h, w = foreground.shape[:2] resized_bg = cv2.resize(background, (w, h)) # 合成背景 result = synthesize_background(foreground, bg_path) # 保存结果 cv2.imwrite(output_path, result) print(f"Processed: {input_path} -> {output_path}") except Exception as e: print(f"Error processing {input_path}: {str(e)}") # 使用示例 input_directory = 'F:/dataset/02.TA_EC/EC27/JY_A/' background_image_path = 'F:/dataset/02.TA_EC/rundata/BACKGROUND/ZY_B' output_directory = 'F:/dataset/02.TA_EC/rundata/test' process_images(input_directory, background_image_path, output_directory)