import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import torchvision
import torchvision.transforms as transforms

# 设备配置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 超参数设置
num_epochs_teacher = 10    # 教师模型训练轮数
num_epochs_student = 20    # 学生模型训练轮数
batch_size = 64
learning_rate = 0.001
temperature = 5            # 蒸馏温度
alpha = 0.3                # 蒸馏损失权重

# 数据集准备(示例使用CIFAR-10)
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

# 假设:
# 数据集A是CIFAR-10训练集的前25000张
# 数据集B是CIFAR-10训练集的后25000张
dataset_A = torchvision.datasets.CIFAR10(
    root='./data', train=True, download=True, transform=transform)
dataset_A = torch.utils.data.Subset(dataset_A, range(25000))

dataset_B = torchvision.datasets.CIFAR10(
    root='./data', train=True, download=True, transform=transform)
dataset_B = torch.utils.data.Subset(dataset_B, range(25000, 50000))

train_loader_A = DataLoader(dataset_A, batch_size=batch_size, shuffle=True)
train_loader_B = DataLoader(dataset_B, batch_size=batch_size, shuffle=True)

# 教师模型定义(ResNet18)
class TeacherModel(nn.Module):
    def __init__(self):
        super(TeacherModel, self).__init__()
        self.resnet = torchvision.models.resnet18(pretrained=False)
        self.resnet.fc = nn.Linear(512, 10)  # CIFAR-10有10个类别

    def forward(self, x):
        return self.resnet(x)

# 学生模型定义(更小的CNN)
class StudentModel(nn.Module):
    def __init__(self):
        super(StudentModel, self).__init__()
        self.features = nn.Sequential(
            nn.Conv2d(3, 16, 3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Conv2d(16, 32, 3, padding=1),
            nn.ReLU(),
            nn.MaxPool2d(2)
        )
        self.classifier = nn.Sequential(
            nn.Linear(32 * 8 * 8, 128),
            nn.ReLU(),
            nn.Linear(128, 10)
        )
    
    def forward(self, x):
        x = self.features(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x

# 训练教师模型
teacher = TeacherModel().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(teacher.parameters(), lr=learning_rate)

print("Training Teacher Model...")
for epoch in range(num_epochs_teacher):
    teacher.train()
    for images, labels in train_loader_A:
        images = images.to(device)
        labels = labels.to(device)
        
        outputs = teacher(images)
        loss = criterion(outputs, labels)
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    
    print(f"Teacher Epoch [{epoch+1}/{num_epochs_teacher}]")

# 知识蒸馏训练学生模型
student = StudentModel().to(device)
optimizer = optim.Adam(student.parameters(), lr=learning_rate)
criterion_hard = nn.CrossEntropyLoss()
criterion_soft = nn.KLDivLoss(reduction="batchmean")

print("\nDistilling Knowledge to Student...")
teacher.eval()  # 设置教师模型为评估模式

for epoch in range(num_epochs_student):
    student.train()
    total_loss = 0
    
    for images, labels in train_loader_B:
        images = images.to(device)
        labels = labels.to(device)
        
        # 教师模型预测(不计算梯度)
        with torch.no_grad():
            teacher_logits = teacher(images)
        
        # 学生模型预测
        student_logits = student(images)
        
        # 计算硬标签损失
        hard_loss = criterion_hard(student_logits, labels)
        
        # 计算软标签损失(带温度缩放)
        soft_loss = criterion_soft(
            nn.functional.log_softmax(student_logits / temperature, dim=1),
            nn.functional.softmax(teacher_logits / temperature, dim=1)
        ) * (temperature ** 2)  # 缩放梯度
        
        # 组合损失
        loss = alpha * hard_loss + (1 - alpha) * soft_loss
        
        # 反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        total_loss += loss.item()
    
    avg_loss = total_loss / len(train_loader_B)
    print(f"Student Epoch [{epoch+1}/{num_epochs_student}], Loss: {avg_loss:.4f}")

print("Knowledge distillation complete!")