123 lines
4.7 KiB
Python
123 lines
4.7 KiB
Python
![]() |
import warnings
|
||
|
warnings.filterwarnings('ignore')
|
||
|
|
||
|
import os
|
||
|
import pandas as pd
|
||
|
import numpy as np
|
||
|
import matplotlib.pylab as plt
|
||
|
|
||
|
pwd = os.getcwd()
|
||
|
|
||
|
names = []
|
||
|
|
||
|
plt.figure(figsize=(10, 10))
|
||
|
|
||
|
plt.subplot(2, 2, 1)
|
||
|
for i in names:
|
||
|
data = pd.read_csv(f'runs/train/{i}/results.csv')
|
||
|
data[' metrics/precision(B)'] = data[' metrics/precision(B)'].astype(np.float32).replace(np.inf, np.nan)
|
||
|
data[' metrics/precision(B)'] = data[' metrics/precision(B)'].fillna(data[' metrics/precision(B)'].interpolate())
|
||
|
plt.plot(data[' metrics/precision(B)'], label=i)
|
||
|
plt.xlabel('epoch')
|
||
|
plt.title('precision')
|
||
|
plt.legend()
|
||
|
|
||
|
plt.subplot(2, 2, 2)
|
||
|
for i in names:
|
||
|
data = pd.read_csv(f'runs/train/{i}/results.csv')
|
||
|
data[' metrics/recall(B)'] = data[' metrics/recall(B)'].astype(np.float32).replace(np.inf, np.nan)
|
||
|
data[' metrics/recall(B)'] = data[' metrics/recall(B)'].fillna(data[' metrics/recall(B)'].interpolate())
|
||
|
plt.plot(data[' metrics/recall(B)'], label=i)
|
||
|
plt.xlabel('epoch')
|
||
|
plt.title('recall')
|
||
|
plt.legend()
|
||
|
|
||
|
plt.subplot(2, 2, 3)
|
||
|
for i in names:
|
||
|
data = pd.read_csv(f'runs/train/{i}/results.csv')
|
||
|
data[' metrics/mAP50(B)'] = data[' metrics/mAP50(B)'].astype(np.float32).replace(np.inf, np.nan)
|
||
|
data[' metrics/mAP50(B)'] = data[' metrics/mAP50(B)'].fillna(data[' metrics/mAP50(B)'].interpolate())
|
||
|
plt.plot(data[' metrics/mAP50(B)'], label=i)
|
||
|
plt.xlabel('epoch')
|
||
|
plt.title('mAP_0.5')
|
||
|
plt.legend()
|
||
|
|
||
|
plt.subplot(2, 2, 4)
|
||
|
for i in names:
|
||
|
data = pd.read_csv(f'runs/train/{i}/results.csv')
|
||
|
data[' metrics/mAP50-95(B)'] = data[' metrics/mAP50-95(B)'].astype(np.float32).replace(np.inf, np.nan)
|
||
|
data[' metrics/mAP50-95(B)'] = data[' metrics/mAP50-95(B)'].fillna(data[' metrics/mAP50-95(B)'].interpolate())
|
||
|
plt.plot(data[' metrics/mAP50-95(B)'], label=i)
|
||
|
plt.xlabel('epoch')
|
||
|
plt.title('mAP_0.5:0.95')
|
||
|
plt.legend()
|
||
|
|
||
|
plt.tight_layout()
|
||
|
plt.savefig('metrice_curve.png')
|
||
|
print(f'metrice_curve.png save in {pwd}/metrice_curve.png')
|
||
|
|
||
|
plt.figure(figsize=(15, 10))
|
||
|
|
||
|
plt.subplot(2, 3, 1)
|
||
|
for i in names:
|
||
|
data = pd.read_csv(f'runs/train/{i}/results.csv')
|
||
|
data[' train/box_loss'] = data[' train/box_loss'].astype(np.float32).replace(np.inf, np.nan)
|
||
|
data[' train/box_loss'] = data[' train/box_loss'].fillna(data[' train/box_loss'].interpolate())
|
||
|
plt.plot(data[' train/box_loss'], label=i)
|
||
|
plt.xlabel('epoch')
|
||
|
plt.title('train/box_loss')
|
||
|
plt.legend()
|
||
|
|
||
|
plt.subplot(2, 3, 2)
|
||
|
for i in names:
|
||
|
data = pd.read_csv(f'runs/train/{i}/results.csv')
|
||
|
data[' train/dfl_loss'] = data[' train/dfl_loss'].astype(np.float32).replace(np.inf, np.nan)
|
||
|
data[' train/dfl_loss'] = data[' train/dfl_loss'].fillna(data[' train/dfl_loss'].interpolate())
|
||
|
plt.plot(data[' train/dfl_loss'], label=i)
|
||
|
plt.xlabel('epoch')
|
||
|
plt.title('train/dfl_loss')
|
||
|
plt.legend()
|
||
|
|
||
|
plt.subplot(2, 3, 3)
|
||
|
for i in names:
|
||
|
data = pd.read_csv(f'runs/train/{i}/results.csv')
|
||
|
data[' train/cls_loss'] = data[' train/cls_loss'].astype(np.float32).replace(np.inf, np.nan)
|
||
|
data[' train/cls_loss'] = data[' train/cls_loss'].fillna(data[' train/cls_loss'].interpolate())
|
||
|
plt.plot(data[' train/cls_loss'], label=i)
|
||
|
plt.xlabel('epoch')
|
||
|
plt.title('train/cls_loss')
|
||
|
plt.legend()
|
||
|
|
||
|
plt.subplot(2, 3, 4)
|
||
|
for i in names:
|
||
|
data = pd.read_csv(f'runs/train/{i}/results.csv')
|
||
|
data[' val/box_loss'] = data[' val/box_loss'].astype(np.float32).replace(np.inf, np.nan)
|
||
|
data[' val/box_loss'] = data[' val/box_loss'].fillna(data[' val/box_loss'].interpolate())
|
||
|
plt.plot(data[' val/box_loss'], label=i)
|
||
|
plt.xlabel('epoch')
|
||
|
plt.title('val/box_loss')
|
||
|
plt.legend()
|
||
|
|
||
|
plt.subplot(2, 3, 5)
|
||
|
for i in names:
|
||
|
data = pd.read_csv(f'runs/train/{i}/results.csv')
|
||
|
data[' val/dfl_loss'] = data[' val/dfl_loss'].astype(np.float32).replace(np.inf, np.nan)
|
||
|
data[' val/dfl_loss'] = data[' val/dfl_loss'].fillna(data[' val/dfl_loss'].interpolate())
|
||
|
plt.plot(data[' val/dfl_loss'], label=i)
|
||
|
plt.xlabel('epoch')
|
||
|
plt.title('val/dfl_loss')
|
||
|
plt.legend()
|
||
|
|
||
|
plt.subplot(2, 3, 6)
|
||
|
for i in names:
|
||
|
data = pd.read_csv(f'runs/train/{i}/results.csv')
|
||
|
data[' val/cls_loss'] = data[' val/cls_loss'].astype(np.float32).replace(np.inf, np.nan)
|
||
|
data[' val/cls_loss'] = data[' val/cls_loss'].fillna(data[' val/cls_loss'].interpolate())
|
||
|
plt.plot(data[' val/cls_loss'], label=i)
|
||
|
plt.xlabel('epoch')
|
||
|
plt.title('val/cls_loss')
|
||
|
plt.legend()
|
||
|
|
||
|
plt.tight_layout()
|
||
|
plt.savefig('loss_curve.png')
|
||
|
print(f'loss_curve.png save in {pwd}/loss_curve.png')
|