add resnet

This commit is contained in:
yoiannis 2025-02-25 15:10:10 +08:00
parent cbb64b4949
commit 21c1778a4a
6 changed files with 212 additions and 64 deletions

3
.gitignore vendored
View File

@ -166,4 +166,5 @@ pnnx*
/ultralytics/assets/
# dataset cache
*.cache
*.cache
.conda

View File

@ -5,25 +5,14 @@ from ultralytics import YOLO
if __name__ == '__main__':
error_result = []
for yaml_path in tqdm.tqdm(os.listdir('ultralytics/cfg/models/v8')):
if 'rtdetr' not in yaml_path and 'cls' not in yaml_path and 'world' not in yaml_path:
try:
model = YOLO(f'ultralytics/cfg/models/v8/{yaml_path}')
model.info(detailed=True)
model.profile([640, 640])
model.fuse()
except Exception as e:
error_result.append(f'{yaml_path} {e}')
for yaml_path in tqdm.tqdm(os.listdir('ultralytics/cfg/models/v10')):
if 'rtdetr' not in yaml_path and 'cls' not in yaml_path and 'world' not in yaml_path:
try:
model = YOLO(f'ultralytics/cfg/models/v10/{yaml_path}')
model.info(detailed=True)
model.profile([640, 640])
model.fuse()
except Exception as e:
error_result.append(f'{yaml_path} {e}')
try:
model = YOLO(f'ultralytics/cfg/models/mtl/yolov8-cls.yaml')
model.info(detailed=True)
model.profile([224, 224])
model.fuse()
except Exception as e:
print(e)
for i in error_result:
print(i)

View File

@ -5,50 +5,10 @@ import warnings, os
warnings.filterwarnings('ignore')
from ultralytics import YOLO
# BILIBILI UP 魔傀面具
# 训练参数官方详解链接https://docs.ultralytics.com/modes/train/#resuming-interrupted-trainings:~:text=a%20training%20run.-,Train%20Settings,-The%20training%20settings
# 指定显卡和多卡训练问题 统一都在<YOLOV8V10配置文件.md>下方常见错误和解决方案。
# 训练过程中loss出现nan可以尝试关闭AMP就是把下方amp=False的注释去掉。
# 训练时候输出的AMP Check使用的YOLOv8n的权重不是代表载入了预训练权重的意思只是用于测试AMP正常的不需要理会。
# 整合多个创新点的B站视频链接:https://www.bilibili.com/video/BV15H4y1Y7a2/
# 更多问题解答请看使用说明.md下方<常见疑问>
# YOLOV8源码常见疑问解答小课堂
# 1. [关于配置文件中Optimizer参数为auto的时候究竟Optimizer会怎么选用呢](https://www.bilibili.com/video/BV1K34y1w7cZ/)
# 2. [best.pt究竟是根据什么指标来保存的?](https://www.bilibili.com/video/BV1jN411M7MA/)
# 3. [数据增强在yolov8中的应用](https://www.bilibili.com/video/BV1aQ4y1g7ah/)
# 4. [如何添加FPS计算代码和FPS的相关的一些疑问](https://www.bilibili.com/video/BV1Sw411g7DD/)
# 5. [预测框粗细颜色修改与精度小数位修改](https://www.bilibili.com/video/BV12K421a7rH/)
# 6. [导出改进/剪枝的onnx模型和讲解onnx-opset和onnxsim的作用](https://www.bilibili.com/video/BV1CK421e7Y3/)
# 7. [YOLOV8模型详细讲解(包含该如何改进YOLOV8)(刚入门小白需要改进YOLOV8的同学必看)](https://www.bilibili.com/video/BV1Ms421u7VH/)
# 8. [学习率变化问题](https://www.bilibili.com/video/BV1frnferEL1/)
# 一些非常推荐小白看的视频链接
# 1. [YOLOV8模型详细讲解(包含该如何改进YOLOV8)(刚入门小白需要改进YOLOV8的同学必看)](https://www.bilibili.com/video/BV1Ms421u7VH/)
# 2. [提升多少才能发paper轻量化需要看什么指标需要轻量化到什么程度才能发paper这期给大家一一解答](https://www.bilibili.com/video/BV1QZ421M7gu/)
# 3. [深度学习实验部分常见疑问解答!(小白刚入门必看!少走弯路!少自我内耗!)](https://www.bilibili.com/video/BV1Bz421B7pC/)
# ```
# 1. 如何衡量自己的所做的工作量够不够?
# 2. 为什么别人的论文说这个模块对xxx有作用但是我自己用的时候还掉点了
# 3. 提升是和什么模型相比呢 比如和yolov8这种基础模型比还是和别人提出的目前最好的模型比
# 4. 对比不同的模型的时候,输入尺寸,学习率,学习次数这些是否需要一致?
# ```
# 4. [深度学习实验部分常见疑问解答二!(小白刚入门必看!少走弯路!少自我内耗!)](https://www.bilibili.com/video/BV1ZM4m1m785/)
# ```
# 1. 为什么我用yolov8自带的coco8、coco128训练出来的效果很差
# 2. 我的数据集很大机器跑得慢我是否可以用数据集的百分之10的数据去测试这个改进点是否有效有效再跑整个数据集
# ```
# 5. [深度学习实验部分常见疑问解答三!(怎么判断模型是否收敛?模型过拟合怎么办?)](https://www.bilibili.com/video/BV11S421d76P/)
# 6. [YOLO系列模型训练结果详细解答(训练过程的一些疑问,该放哪个文件运行出来的结果、参数量计算量在哪里看..等等问题)](https://www.bilibili.com/video/BV11b421J7Vx/)
# 7. [深度学习论文实验中新手非常容易陷入的一个误区抱着解决xxx问题的心态去做实验](https://www.bilibili.com/video/BV1kkkvYJEHG/)
# 8. [深度学习实验准备-数据集怎么选?有哪些需要注意的点?](https://www.bilibili.com/video/BV11zySYvEhs/)
# 9. [深度学习炼丹必备必看必须知道的小技巧!](https://www.bilibili.com/video/BV1q3SZYsExc/)
if __name__ == '__main__':
model = YOLO('ultralytics/cfg/models/v8/yolov8n.yaml')
model = YOLO('ultralytics/cfg/models/v8/yolov8n-cls.yaml')
# model.load('yolov8n.pt') # loading pretrain weights
model.train(data='/root/code/dataset/dataset_visdrone/data.yaml',
model.train(data='G:/skin-cancer-detection',
cache=False,
imgsz=640,
epochs=300,

View File

@ -0,0 +1,14 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-cls image classification model. For Usage examples see https://docs.ultralytics.com/tasks/classify
# Parameters
nc: 38 # number of classes
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, ResNet18, []] # 0-P1/2
# YOLOv8.0n head
head:
- [-1, 1, Classify, [nc]] # Classify

View File

@ -0,0 +1,182 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
__all__ = [ 'ResNet18','ResNet34','ResNet50']
'''-------------一、BasicBlock模块-----------------------------'''
# 用于ResNet18和ResNet34基本残差结构块
class BasicBlock(nn.Module):
def __init__(self, inchannel, outchannel, stride=1):
super(BasicBlock, self).__init__()
self.left = nn.Sequential(
nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(outchannel),
nn.ReLU(inplace=True), #inplace=True表示进行原地操作一般默认为False表示新建一个变量存储操作
nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(outchannel)
)
self.shortcut = nn.Sequential()
#论文中模型架构的虚线部分,需要下采样
if stride != 1 or inchannel != outchannel:
self.shortcut = nn.Sequential(
nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(outchannel)
)
def forward(self, x):
out = self.left(x) #这是由于残差块需要保留原始输入
out += self.shortcut(x)#这是ResNet的核心在输出上叠加了输入x
out = F.relu(out)
return out
'''-------------二、Bottleneck模块-----------------------------'''
# 用于ResNet50及以上的残差结构块
class Bottleneck(nn.Module):
def __init__(self, inchannel, outchannel, stride=1):
super(Bottleneck, self).__init__()
self.left = nn.Sequential(
nn.Conv2d(inchannel, int(outchannel / 4), kernel_size=1, stride=stride, padding=0, bias=False),
nn.BatchNorm2d(int(outchannel / 4)),
nn.ReLU(inplace=True),
nn.Conv2d(int(outchannel / 4), int(outchannel / 4), kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(int(outchannel / 4)),
nn.ReLU(inplace=True),
nn.Conv2d(int(outchannel / 4), outchannel, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(outchannel),
)
self.shortcut = nn.Sequential()
if stride != 1 or inchannel != outchannel:
self.shortcut = nn.Sequential(
nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(outchannel)
)
def forward(self, x):
out = self.left(x)
y = self.shortcut(x)
out += self.shortcut(x)
out = F.relu(out)
return out
'''-------------ResNet18---------------'''
class ResNet_18(nn.Module):
def __init__(self, ResidualBlock, num_classes=10):
super(ResNet_18, self).__init__()
self.inchannel = 64
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
)
self.layer1 = self.make_layer(ResidualBlock, 64, 2, stride=1)
self.layer2 = self.make_layer(ResidualBlock, 128, 2, stride=2)
self.layer3 = self.make_layer(ResidualBlock, 256, 2, stride=2)
self.layer4 = self.make_layer(ResidualBlock, 512, 2, stride=2)
self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 224, 224))]
def make_layer(self, block, channels, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1) # strides=[1,1]
layers = []
for stride in strides:
layers.append(block(self.inchannel, channels, stride))
self.inchannel = channels
return nn.Sequential(*layers)
def forward(self, x): # 3*32*32
out = self.conv1(x) # 64*32*32
out = self.layer1(out) # 64*32*32
out = self.layer2(out) # 128*16*16
out = self.layer3(out) # 256*8*8
out = self.layer4(out) # 512*4*4
out = F.avg_pool2d(out, 4) # 512*1*1
return out
'''-------------ResNet34---------------'''
class ResNet_34(nn.Module):
def __init__(self, ResidualBlock, num_classes=10):
super(ResNet_34, self).__init__()
self.inchannel = 64
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
)
self.layer1 = self.make_layer(ResidualBlock, 64, 3, stride=1)
self.layer2 = self.make_layer(ResidualBlock, 128, 4, stride=2)
self.layer3 = self.make_layer(ResidualBlock, 256, 6, stride=2)
self.layer4 = self.make_layer(ResidualBlock, 512, 3, stride=2)
self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 224, 224))]
def make_layer(self, block, channels, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1) # strides=[1,1]
layers = []
for stride in strides:
layers.append(block(self.inchannel, channels, stride))
self.inchannel = channels
return nn.Sequential(*layers)
def forward(self, x): # 3*32*32
out = self.conv1(x) # 64*32*32
out = self.layer1(out) # 64*32*32
out = self.layer2(out) # 128*16*16
out = self.layer3(out) # 256*8*8
out = self.layer4(out) # 512*4*4
out = F.avg_pool2d(out, 4) # 512*1*1
out = out.view(out.size(0), -1) # 512
return out
'''-------------ResNet50---------------'''
class ResNet_50(nn.Module):
def __init__(self, ResidualBlock, num_classes=10):
super(ResNet_50, self).__init__()
self.inchannel = 64
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
)
self.layer1 = self.make_layer(ResidualBlock, 256, 3, stride=1)
self.layer2 = self.make_layer(ResidualBlock, 512, 4, stride=2)
self.layer3 = self.make_layer(ResidualBlock, 1024, 6, stride=2)
self.layer4 = self.make_layer(ResidualBlock, 2048, 3, stride=2)
self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 224, 224))]
# **************************
def make_layer(self, block, channels, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1) # strides=[1,1]
layers = []
for stride in strides:
layers.append(block(self.inchannel, channels, stride))
self.inchannel = channels
return nn.Sequential(*layers)
def forward(self, x): # 3*32*32
out = self.conv1(x) # 64*32*32
out = self.layer1(out) # 64*32*32
out = self.layer2(out) # 128*16*16
out = self.layer3(out) # 256*8*8
out = self.layer4(out) # 512*4*4
out = F.avg_pool2d(out, 4) # 512*1*1
# print(out.size())
return out
def ResNet18():
return ResNet_18(BasicBlock)
def ResNet34():
return ResNet_34(BasicBlock)
def ResNet50():
return ResNet_50(Bottleneck)
if __name__ == '__main__':
model = ResNet18()
inputs = torch.randn((1, 3, 224, 224))
res = model(inputs)
for i in res:
print(i.size())

View File

@ -93,6 +93,7 @@ from ultralytics.nn.backbone.revcol import *
from ultralytics.nn.backbone.lsknet import *
from ultralytics.nn.backbone.SwinTransformer import *
from ultralytics.nn.backbone.repvit import *
from ultralytics.nn.backbone.resnet import *
from ultralytics.nn.backbone.CSwomTramsformer import *
from ultralytics.nn.backbone.UniRepLKNet import *
from ultralytics.nn.backbone.TransNext import *
@ -871,7 +872,7 @@ def torch_safe_load(weight):
"ultralytics.nn.tasks.YOLOv10DetectionModel": "ultralytics.nn.tasks.DetectionModel", # YOLOv10
},
):
ckpt = torch.load(file, map_location="cpu")
ckpt = torch.load(file, map_location="cpu",weights_only=False)
except ModuleNotFoundError as e: # e.name is missing module name
if e.name == "models":
@ -1150,7 +1151,8 @@ def parse_model(d, ch, verbose=True, warehouse_manager=None): # model_dict, inp
RMT_T, RMT_S, RMT_B, RMT_L,
PKINET_T, PKINET_S, PKINET_B,
MobileNetV4ConvSmall, MobileNetV4ConvMedium, MobileNetV4ConvLarge, MobileNetV4HybridMedium, MobileNetV4HybridLarge,
starnet_s050, starnet_s100, starnet_s150, starnet_s1, starnet_s2, starnet_s3, starnet_s4
starnet_s050, starnet_s100, starnet_s150, starnet_s1, starnet_s2, starnet_s3, starnet_s4,
ResNet18,ResNet34,ResNet50,
}:
if m is RevCol:
args[1] = [make_divisible(min(k, max_channels) * width, 8) for k in args[1]]