init project

This commit is contained in:
yoiannis 2025-02-25 11:58:34 +08:00
commit cbb64b4949
2349 changed files with 403911 additions and 0 deletions

169
.gitignore vendored Normal file
View File

@ -0,0 +1,169 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# Profiling
*.pclprof
# pyenv
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
.idea
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# VSCode project settings
.vscode/
# Rope project settings
.ropeproject
# mkdocs documentation
/site
mkdocs_github_authors.yaml
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# datasets and projects
datasets/
runs/
wandb/
tests/
logs/
.DS_Store
# Neural Network weights -----------------------------------------------------------------------------------------------
weights/
*.weights
*.pt
*.pb
*.onnx
*.engine
*.mlmodel
*.mlpackage
*.torchscript
*.tflite
*.h5
*_saved_model/
*_web_model/
*_openvino_model/
*_paddle_model/
pnnx*
# Autogenerated files for tests
/ultralytics/assets/
# dataset cache
*.cache

86
.pre-commit-config.yaml Normal file
View File

@ -0,0 +1,86 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Pre-commit hooks. For more information see https://github.com/pre-commit/pre-commit-hooks/blob/main/README.md
# Optionally remove from local hooks with 'rm .git/hooks/pre-commit'
# Define bot property if installed via https://github.com/marketplace/pre-commit-ci
ci:
autofix_prs: true
autoupdate_commit_msg: "[pre-commit.ci] pre-commit suggestions"
autoupdate_schedule: monthly
submodules: true
# Exclude directories (optional)
# exclude: 'docs/'
# Define repos to run
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.5.0
hooks:
- id: end-of-file-fixer
- id: trailing-whitespace
- id: check-case-conflict
# - id: check-yaml
- id: check-docstring-first
- id: detect-private-key
- repo: https://github.com/asottile/pyupgrade
rev: v3.15.0
hooks:
- id: pyupgrade
name: Upgrade code
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.1.11
hooks:
- id: ruff
args: [--fix]
- repo: https://github.com/executablebooks/mdformat
rev: 0.7.17
hooks:
- id: mdformat
name: MD formatting
additional_dependencies:
- mdformat-gfm
- mdformat-frontmatter
- mdformat-mkdocs
args:
- --wrap=no
- --number
exclude: 'docs/.*\.md'
# exclude: "README.md|README.zh-CN.md|CONTRIBUTING.md"
- repo: https://github.com/codespell-project/codespell
rev: v2.2.6
hooks:
- id: codespell
exclude: "docs/de|docs/fr|docs/pt|docs/es|docs/mkdocs_de.yml"
args:
- --ignore-words-list=crate,nd,ned,strack,dota,ane,segway,fo,gool,winn,commend,bloc,nam,afterall
- repo: https://github.com/hadialqattan/pycln
rev: v2.4.0
hooks:
- id: pycln
args: [--all]
#
# - repo: https://github.com/PyCQA/docformatter
# rev: v1.7.5
# hooks:
# - id: docformatter
# - repo: https://github.com/asottile/yesqa
# rev: v1.4.0
# hooks:
# - id: yesqa
# - repo: https://github.com/asottile/dead
# rev: v1.5.0
# hooks:
# - id: dead
# - repo: https://github.com/ultralytics/pre-commit
# rev: bd60a414f80a53fb8f593d3bfed4701fc47e4b23
# hooks:
# - id: capitalize-comments

26
CITATION.cff Normal file
View File

@ -0,0 +1,26 @@
# This CITATION.cff file was generated with https://bit.ly/cffinit
cff-version: 1.2.0
title: Ultralytics YOLO
message: >-
If you use this software, please cite it using the
metadata from this file.
type: software
authors:
- given-names: Glenn
family-names: Jocher
affiliation: Ultralytics
orcid: 'https://orcid.org/0000-0001-5950-6979'
- given-names: Ayush
family-names: Chaurasia
affiliation: Ultralytics
orcid: 'https://orcid.org/0000-0002-7603-6750'
- family-names: Qiu
given-names: Jing
affiliation: Ultralytics
orcid: 'https://orcid.org/0000-0003-3783-7069'
repository-code: 'https://github.com/ultralytics/ultralytics'
url: 'https://ultralytics.com'
license: AGPL-3.0
version: 8.0.0
date-released: '2023-01-10'

134
CONTRIBUTING.md Normal file
View File

@ -0,0 +1,134 @@
---
comments: true
description: Learn how to contribute to Ultralytics YOLO open-source repositories. Follow guidelines for pull requests, code of conduct, and bug reporting.
keywords: Ultralytics, YOLO, open-source, contribution, pull request, code of conduct, bug reporting, GitHub, CLA, Google-style docstrings
---
# Contributing to Ultralytics Open-Source YOLO Repositories
Thank you for your interest in contributing to Ultralytics open-source YOLO repositories! Your contributions will enhance the project and benefit the entire community. This document provides guidelines and best practices to help you get started.
## Table of Contents
1. [Code of Conduct](#code-of-conduct)
2. [Contributing via Pull Requests](#contributing-via-pull-requests)
- [CLA Signing](#cla-signing)
- [Google-Style Docstrings](#google-style-docstrings)
- [GitHub Actions CI Tests](#github-actions-ci-tests)
3. [Reporting Bugs](#reporting-bugs)
4. [License](#license)
5. [Conclusion](#conclusion)
## Code of Conduct
All contributors must adhere to the [Code of Conduct](code_of_conduct.md) to ensure a welcoming and inclusive environment for everyone.
## Contributing via Pull Requests
We welcome contributions in the form of pull requests. To streamline the review process, please follow these guidelines:
1. **[Fork the repository](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/working-with-forks/fork-a-repo)**: Fork the Ultralytics YOLO repository to your GitHub account.
2. **[Create a branch](https://docs.github.com/en/desktop/making-changes-in-a-branch/managing-branches-in-github-desktop)**: Create a new branch in your forked repository with a descriptive name for your changes.
3. **Make your changes**: Ensure that your changes follow the project's coding style and do not introduce new errors or warnings.
4. **[Test your changes](https://github.com/ultralytics/ultralytics/tree/main/tests)**: Test your changes locally to ensure they work as expected and do not introduce new issues.
5. **[Commit your changes](https://docs.github.com/en/desktop/making-changes-in-a-branch/committing-and-reviewing-changes-to-your-project-in-github-desktop)**: Commit your changes with a descriptive commit message. Include any relevant issue numbers in your commit message.
6. **[Create a pull request](https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request)**: Create a pull request from your forked repository to the main Ultralytics YOLO repository. Provide a clear explanation of your changes and how they improve the project.
### CLA Signing
Before we can accept your pull request, you must sign a [Contributor License Agreement (CLA)](CLA.md). This legal document ensures that your contributions are properly licensed and that the project can continue to be distributed under the AGPL-3.0 license.
To sign the CLA, follow the instructions provided by the CLA bot after you submit your PR and add a comment in your PR saying:
```
I have read the CLA Document and I sign the CLA
```
### Google-Style Docstrings
When adding new functions or classes, include a [Google-style docstring](https://google.github.io/styleguide/pyguide.html) to provide clear and concise documentation for other developers. This helps ensure your contributions are easy to understand and maintain.
#### Google-style
This example shows a Google-style docstring. Note that both input and output `types` must always be enclosed by parentheses, i.e. `(bool)`.
```python
def example_function(arg1, arg2=4):
"""
This example shows a Google-style docstring. Note that both input and output `types` must always be enclosed by
parentheses, i.e., `(bool)`.
Args:
arg1 (int): The first argument.
arg2 (int): The second argument. Default value is 4.
Returns:
(bool): True if successful, False otherwise.
Examples:
>>> result = example_function(1, 2) # returns False
"""
if arg1 == arg2:
return True
return False
```
#### Google-style with type hints
This example shows both a Google-style docstring and argument and return type hints, though both are not required, one can be used without the other.
```python
def example_function(arg1: int, arg2: int = 4) -> bool:
"""
This example shows both a Google-style docstring and argument and return type hints, though both are not required;
one can be used without the other.
Args:
arg1: The first argument.
arg2: The second argument. Default value is 4.
Returns:
True if successful, False otherwise.
Examples:
>>> result = example_function(1, 2) # returns False
"""
if arg1 == arg2:
return True
return False
```
#### Single-line
Smaller or simpler functions can utilize a single-line docstring. Note the docstring must use 3 double-quotes, and be a complete sentence starting with a capital letter and ending with a period.
```python
def example_small_function(arg1: int, arg2: int = 4) -> bool:
"""Example function that demonstrates a single-line docstring."""
return arg1 == arg2
```
### GitHub Actions CI Tests
Before your pull request can be merged, all GitHub Actions [Continuous Integration](https://docs.ultralytics.com/help/CI/) (CI) tests must pass. These tests include linting, unit tests, and other checks to ensure that your changes meet the quality standards of the project. Make sure to review the output of the GitHub Actions and fix any issues
## Reporting Bugs
We appreciate bug reports as they play a crucial role in maintaining the project's quality. When reporting bugs it is important to provide a [Minimum Reproducible Example](https://docs.ultralytics.com/help/minimum_reproducible_example/): a clear, concise code example that replicates the issue. This helps in quick identification and resolution of the bug.
## License
Ultralytics embraces the [GNU Affero General Public License v3.0 (AGPL-3.0)](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) for its repositories, promoting openness, transparency, and collaborative enhancement in software development. This strong copyleft license ensures that all users and developers retain the freedom to use, modify, and share the software. It fosters community collaboration, ensuring that any improvements remain accessible to all.
Users and developers are encouraged to familiarize themselves with the terms of AGPL-3.0 to contribute effectively and ethically to the Ultralytics open-source community.
## Conclusion
Thank you for your interest in contributing to [Ultralytics open-source](https://github.com/ultralytics) YOLO projects. Your participation is crucial in shaping the future of our software and fostering a community of innovation and collaboration. Whether you're improving code, reporting bugs, or suggesting features, your contributions make a significant impact.
We look forward to seeing your ideas in action and appreciate your commitment to advancing object detection technology. Let's continue to grow and innovate together in this exciting open-source journey. Happy coding! 🚀🌟

661
LICENSE Normal file
View File

@ -0,0 +1,661 @@
GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.
A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.
The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.
An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU Affero General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Remote Network Interaction; Use with the GNU General Public License.
Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<https://www.gnu.org/licenses/>.

31
LOSS改进系列.md Normal file
View File

@ -0,0 +1,31 @@
# Loss系列
1. SlideLoss,EMASlideLoss.(可动态调节正负样本的系数,让模型更加注重难分类,错误分类的样本上)[Yolo-Face V2](https://github.com/Krasjet-Yu/YOLO-FaceV2/blob/master/utils/loss.py)
在ultralytics/utils/loss.py中的class v8DetectionLoss进行设定.(支持v8-detect、v8-seg、v8-pose、v10)
EMASlideLoss具体思想可以参考https://www.bilibili.com/video/BV1W14y1i79U/?vd_source=c8452371e7ca510979593165c8d7ac27
2. FocalLoss,VarifocalLoss,QualityfocalLoss(支持v8-detect、v8-seg、v8-pose、v8-obb、v10)
项目视频百度云链接-20240111版本更新说明.
3. Normalized Gaussian Wasserstein Distance(支持v8-detect、v8-seg、v8-pose、v10)[论文链接](https://arxiv.org/abs/2110.13389)
在Loss中使用:
在ultralytics/utils/loss.py中的BboxLoss class中的__init__函数里面设置self.nwd_loss为True.
比例系数调整self.iou_ratio, self.iou_ratio代表iou的占比,(1-self.iou_ratio)为代表nwd的占比.
在TAL标签分配中使用:
在ultralytics/utils/tal.py中的def iou_calculation函数中进行更换即可.
以上这两可以配合使用,也可以单独使用.
4. 定位损失系列(支持v8-detect、v8-seg、v8-pose、v10)
1. IoU,GIoU,DIoU,CIoU,EIoU,SIoU,MPDIoU,ShapeIoU.
2. Inner-IoU,Inner-GIoU,Inner-DIoU,Inner-CIoU,Inner-EIoU,Inner-SIoU,Inner-ShapeIoU,Inner-MPDIoU.
3. Focaler-IoU系列(IoU,GIoU,DIoU,CIoU,EIoU,SIoU,WIoU,MPDIoU,ShapeIoU)
4. Powerful-IoU,Powerful-IoUV2,Inner-Powerful-IoU,Inner-Powerful-IoUV2,Focaler-Powerful-IoU,Focaler-Powerful-IoUV2[论文链接](https://www.sciencedirect.com/science/article/abs/pii/S0893608023006640)
项目视频百度云链接-定位损失系列更换说明
1. Wise-IoU(v1,v2,v3)系列(IoU,WIoU,EIoU,GIoU,DIoU,CIoU,SIoU,MPDIoU,ShapeIoU,Powerful-IoU,Powerful-IoUV2).
2. Inner-Wise-IoU(v1,v2,v3)系列(IoU,WIoU,EIoU,GIoU,DIoU,CIoU,SIoU,MPDIoU,ShapeIoU,Powerful-IoU,Powerful-IoUV2).
项目视频百度云链接-20240111版本更新说明

297
README.md Normal file
View File

@ -0,0 +1,297 @@
<div align="center">
<p>
<a href="https://github.com/ultralytics/assets/releases/tag/v8.2.0" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="YOLO Vision banner"></a>
</p>
[中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [Türkçe](https://docs.ultralytics.com/tr/) | [Tiếng Việt](https://docs.ultralytics.com/vi/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/) <br>
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLOv8 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Ultralytics Docker Pulls"></a>
<a href="https://ultralytics.com/discord"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
<a href="https://community.ultralytics.com"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run Ultralytics on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open Ultralytics In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open Ultralytics In Kaggle"></a>
</div>
<br>
[Ultralytics](https://ultralytics.com) [YOLOv8](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
We hope that the resources here will help you get the most out of YOLOv8. Please browse the YOLOv8 <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, and join our <a href="https://ultralytics.com/discord">Discord</a> community for questions and discussions!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png" alt="YOLOv8 performance plots"></a>
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="2%" alt="Ultralytics BiliBili"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
## <div align="center">Documentation</div>
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
<details open>
<summary>Install</summary>
Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).
[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)
```bash
pip install ultralytics
```
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart).
[![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)
</details>
<details open>
<summary>Usage</summary>
### CLI
YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:
```bash
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
```
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli) for examples.
### Python
YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.yaml") # build a new model from scratch
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Use the model
model.train(data="coco8.yaml", epochs=3) # train the model
metrics = model.val() # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
path = model.export(format="onnx") # export the model to ONNX format
```
See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.
</details>
### Notebooks
Ultralytics provides interactive notebooks for YOLOv8, covering training, validation, tracking, and more. Each notebook is paired with a [YouTube](https://youtube.com/ultralytics?sub_confirmation=1) tutorial, making it easy to learn and implement advanced YOLOv8 features.
| Docs | Notebook | YouTube |
| ---------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| <a href="https://docs.ultralytics.com/modes/">YOLOv8 Train, Val, Predict and Export Modes</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/j8uQc0qB91s"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
| <a href="https://docs.ultralytics.com/hub/quickstart/">Ultralytics HUB QuickStart</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/hub.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/lveF9iCMIzc"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
| <a href="https://docs.ultralytics.com/modes/track/">YOLOv8 Multi-Object Tracking in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_tracking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/hHyHmOtmEgs"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
| <a href="https://docs.ultralytics.com/guides/object-counting/">YOLOv8 Object Counting in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_counting.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/Ag2e-5_NpS0"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
| <a href="https://docs.ultralytics.com/guides/heatmaps/">YOLOv8 Heatmaps in Videos</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/heatmaps.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/4ezde5-nZZw"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
| <a href="https://docs.ultralytics.com/datasets/explorer/">Ultralytics Datasets Explorer with SQL and OpenAI Integration 🚀 New</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | <a href="https://youtu.be/3VryynorQeo"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
## <div align="center">Models</div>
YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect), [Segment](https://docs.ultralytics.com/tasks/segment) and [Pose](https://docs.ultralytics.com/tasks/pose) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet) dataset. [Track](https://docs.ultralytics.com/modes/track) mode is available for all Detect, Segment and Pose models.
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
All [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
<details open><summary>Detection (COCO)</summary>
See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [COCO](https://docs.ultralytics.com/datasets/detect/coco/), which include 80 pre-trained classes.
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
</details>
<details><summary>Detection (Open Image V7)</summary>
See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/), which include 600 pre-trained classes.
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
- **mAP<sup>val</sup>** values are for single-model single-scale on [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/) dataset. <br>Reproduce by `yolo val detect data=open-images-v7.yaml device=0`
- **Speed** averaged over Open Image V7 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=open-images-v7.yaml batch=1 device=0|cpu`
</details>
<details><summary>Segmentation (COCO)</summary>
See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), which include 80 pre-trained classes.
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
</details>
<details><summary>Pose (COCO)</summary>
See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
</details>
<details><summary>OBB (DOTAv1)</summary>
See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with these models trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), which include 15 pre-trained classes.
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-obb.pt) | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
| [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-obb.pt) | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
| [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
| [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
| [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
- **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
- **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
</details>
<details><summary>Classification (ImageNet)</summary>
See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-cls.pt) | 224 | 78.3 | 94.2 | 163.0 | 0.87 | 37.5 | 99.7 |
| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
</details>
## <div align="center">Integrations</div>
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino), can optimize your AI workflow.
<br>
<a href="https://ultralytics.com/hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations"></a>
<br>
<br>
<div align="center">
<a href="https://roboflow.com/?ref=ultralytics">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-roboflow.png" width="10%" alt="Roboflow logo"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
<a href="https://clear.ml/">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-clearml.png" width="10%" alt="ClearML logo"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
<a href="https://bit.ly/yolov8-readme-comet">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" alt="Comet ML logo"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
<a href="https://bit.ly/yolov5-neuralmagic">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="NeuralMagic logo"></a>
</div>
| Roboflow | ClearML ⭐ NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW |
| :--------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
| Label and export your custom datasets directly to YOLOv8 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLOv8 using [ClearML](https://clear.ml/) (open-source!) | Free forever, [Comet](https://bit.ly/yolov8-readme-comet) lets you save YOLOv8 models, resume training, and interactively visualize and debug predictions | Run YOLOv8 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
## <div align="center">Ultralytics HUB</div>
Experience seamless AI with [Ultralytics HUB](https://ultralytics.com/hub) ⭐, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://ultralytics.com/app_install). Start your journey for **Free** now!
<a href="https://ultralytics.com/hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
## <div align="center">Contribute</div>
We love your input! YOLOv5 and YOLOv8 would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started, and fill out our [Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" alt="Ultralytics open-source contributors"></a>
## <div align="center">License</div>
Ultralytics offers two licensing options to accommodate diverse use cases:
- **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/licenses/) open-source license is ideal for students and enthusiasts, promoting open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for more details.
- **Enterprise License**: Designed for commercial use, this license permits seamless integration of Ultralytics software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your scenario involves embedding our solutions into a commercial offering, reach out through [Ultralytics Licensing](https://ultralytics.com/license).
## <div align="center">Contact</div>
For Ultralytics bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues), and join our [Discord](https://ultralytics.com/discord) community for questions and discussions!
<br>
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="3%" alt="Ultralytics BiliBili"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
</div>

299
README.zh-CN.md Normal file
View File

@ -0,0 +1,299 @@
<div align="center">
<p>
<a href="https://github.com/ultralytics/assets/releases/tag/v8.2.0" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="YOLO Vision banner"></a>
</p>
[中文](https://docs.ultralytics.com/zh/) | [한국어](https://docs.ultralytics.com/ko/) | [日本語](https://docs.ultralytics.com/ja/) | [Русский](https://docs.ultralytics.com/ru/) | [Deutsch](https://docs.ultralytics.com/de/) | [Français](https://docs.ultralytics.com/fr/) | [Español](https://docs.ultralytics.com/es/) | [Português](https://docs.ultralytics.com/pt/) | [Türkçe](https://docs.ultralytics.com/tr/) | [Tiếng Việt](https://docs.ultralytics.com/vi/) | [हिन्दी](https://docs.ultralytics.com/hi/) | [العربية](https://docs.ultralytics.com/ar/) <br>
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv8 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
<a href="https://ultralytics.com/discord"><img alt="Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
<a href="https://community.ultralytics.com"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
[Ultralytics](https://ultralytics.com) [YOLOv8](https://github.com/ultralytics/ultralytics) 是一款前沿、最先进SOTA的模型基于先前 YOLO 版本的成功引入了新功能和改进进一步提升性能和灵活性。YOLOv8 设计快速、准确且易于使用,使其成为各种物体检测与跟踪、实例分割、图像分类和姿态估计任务的绝佳选择。
我们希望这里的资源能帮助您充分利用 YOLOv8。请浏览 YOLOv8 <a href="https://docs.ultralytics.com/">文档</a> 了解详细信息,在 <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> 上提交问题以获得支持,并加入我们的 <a href="https://ultralytics.com/discord">Discord</a> 社区进行问题和讨论!
如需申请企业许可,请在 [Ultralytics Licensing](https://ultralytics.com/license) 处填写表格
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png" alt="YOLOv8 performance plots"></a>
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="2%" alt="Ultralytics BiliBili"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>
以下是提供的内容的中文翻译:
## <div align="center">文档</div>
请参阅下面的快速安装和使用示例,以及 [YOLOv8 文档](https://docs.ultralytics.com) 上有关训练、验证、预测和部署的完整文档。
<details open>
<summary>安装</summary>
使用Pip在一个[**Python>=3.8**](https://www.python.org/)环境中安装`ultralytics`包,此环境还需包含[**PyTorch>=1.8**](https://pytorch.org/get-started/locally/)。这也会安装所有必要的[依赖项](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml)。
[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)
```bash
pip install ultralytics
```
如需使用包括[Conda](https://anaconda.org/conda-forge/ultralytics)[Docker](https://hub.docker.com/r/ultralytics/ultralytics)和Git在内的其他安装方法请参考[快速入门指南](https://docs.ultralytics.com/quickstart)。
[![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)
</details>
<details open>
<summary>Usage</summary>
### CLI
YOLOv8 可以在命令行界面CLI中直接使用只需输入 `yolo` 命令:
```bash
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
```
`yolo` 可用于各种任务和模式,并接受其他参数,例如 `imgsz=640`。查看 YOLOv8 [CLI 文档](https://docs.ultralytics.com/usage/cli)以获取示例。
### Python
YOLOv8 也可以在 Python 环境中直接使用,并接受与上述 CLI 示例中相同的[参数](https://docs.ultralytics.com/usage/cfg/)
```python
from ultralytics import YOLO
# 加载模型
model = YOLO("yolov8n.yaml") # 从头开始构建新模型
model = YOLO("yolov8n.pt") # 加载预训练模型(建议用于训练)
# 使用模型
model.train(data="coco8.yaml", epochs=3) # 训练模型
metrics = model.val() # 在验证集上评估模型性能
results = model("https://ultralytics.com/images/bus.jpg") # 对图像进行预测
success = model.export(format="onnx") # 将模型导出为 ONNX 格式
```
查看 YOLOv8 [Python 文档](https://docs.ultralytics.com/usage/python)以获取更多示例。
</details>
### 笔记本
Ultralytics 提供了 YOLOv8 的交互式笔记本,涵盖训练、验证、跟踪等内容。每个笔记本都配有 [YouTube](https://youtube.com/ultralytics?sub_confirmation=1) 教程,使学习和实现高级 YOLOv8 功能变得简单。
| 文档 | 笔记本 | YouTube |
| ----------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
| <a href="https://docs.ultralytics.com/modes/">YOLOv8 训练、验证、预测和导出模式</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="在 Colab 中打开"></a> | <a href="https://youtu.be/j8uQc0qB91s"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube 视频"></center></a> |
| <a href="https://docs.ultralytics.com/hub/quickstart/">Ultralytics HUB 快速开始</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/hub.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="在 Colab 中打开"></a> | <a href="https://youtu.be/lveF9iCMIzc"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube 视频"></center></a> |
| <a href="https://docs.ultralytics.com/modes/track/">YOLOv8 视频中的多对象跟踪</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_tracking.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="在 Colab 中打开"></a> | <a href="https://youtu.be/hHyHmOtmEgs"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube 视频"></center></a> |
| <a href="https://docs.ultralytics.com/guides/object-counting/">YOLOv8 视频中的对象计数</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/object_counting.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="在 Colab 中打开"></a> | <a href="https://youtu.be/Ag2e-5_NpS0"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube 视频"></center></a> |
| <a href="https://docs.ultralytics.com/guides/heatmaps/">YOLOv8 视频中的热图</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/heatmaps.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="在 Colab 中打开"></a> | <a href="https://youtu.be/4ezde5-nZZw"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube 视频"></center></a> |
| <a href="https://docs.ultralytics.com/datasets/explorer/">Ultralytics 数据集浏览器,集成 SQL 和 OpenAI 🚀 New</a> | <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="在 Colab 中打开"></a> | <a href="https://youtu.be/3VryynorQeo"><center><img width=30% src="https://raw.githubusercontent.com/ultralytics/assets/main/social/logo-social-youtube-rect.png" alt="Ultralytics Youtube Video"></center></a> |
## <div align="center">模型</div>
在[COCO](https://docs.ultralytics.com/datasets/detect/coco)数据集上预训练的YOLOv8 [检测](https://docs.ultralytics.com/tasks/detect)[分割](https://docs.ultralytics.com/tasks/segment)和[姿态](https://docs.ultralytics.com/tasks/pose)模型可以在这里找到,以及在[ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet)数据集上预训练的YOLOv8 [分类](https://docs.ultralytics.com/tasks/classify)模型。所有的检测,分割和姿态模型都支持[追踪](https://docs.ultralytics.com/modes/track)模式。
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png" alt="Ultralytics YOLO supported tasks">
所有[模型](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models)在首次使用时会自动从最新的Ultralytics [发布版本](https://github.com/ultralytics/assets/releases)下载。
<details open><summary>检测 (COCO)</summary>
查看[检测文档](https://docs.ultralytics.com/tasks/detect/)以获取这些在[COCO](https://docs.ultralytics.com/datasets/detect/coco/)上训练的模型的使用示例其中包括80个预训练类别。
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>val<br>50-95 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
| ------------------------------------------------------------------------------------ | ------------------- | -------------------- | ----------------------------- | ---------------------------------- | ---------------- | ----------------- |
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
- **mAP<sup>val</sup>** 值是基于单模型单尺度在 [COCO val2017](https://cocodataset.org) 数据集上的结果。 <br>通过 `yolo val detect data=coco.yaml device=0` 复现
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。 <br>通过 `yolo val detect data=coco.yaml batch=1 device=0|cpu` 复现
</details>
<details><summary>检测Open Image V7</summary>
查看[检测文档](https://docs.ultralytics.com/tasks/detect/)以获取这些在[Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/)上训练的模型的使用示例其中包括600个预训练类别。
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>验证<br>50-95 | 速度<br><sup>CPU ONNX<br>(毫秒) | 速度<br><sup>A100 TensorRT<br>(毫秒) | 参数<br><sup>(M) | 浮点运算<br><sup>(B) |
| ----------------------------------------------------------------------------------------- | ------------------- | --------------------- | ------------------------------- | ------------------------------------ | ---------------- | -------------------- |
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-oiv7.pt) | 640 | 18.4 | 142.4 | 1.21 | 3.5 | 10.5 |
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-oiv7.pt) | 640 | 27.7 | 183.1 | 1.40 | 11.4 | 29.7 |
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-oiv7.pt) | 640 | 33.6 | 408.5 | 2.26 | 26.2 | 80.6 |
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
- **mAP<sup>验证</sup>** 值适用于在[Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/)数据集上的单模型单尺度。 <br>通过 `yolo val detect data=open-images-v7.yaml device=0` 以复现。
- **速度** 在使用[Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)实例对Open Image V7验证图像进行平均测算。 <br>通过 `yolo val detect data=open-images-v7.yaml batch=1 device=0|cpu` 以复现。
</details>
<details><summary>分割 (COCO)</summary>
查看[分割文档](https://docs.ultralytics.com/tasks/segment/)以获取这些在[COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/)上训练的模型的使用示例其中包括80个预训练类别。
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
| -------------------------------------------------------------------------------------------- | ------------------- | -------------------- | --------------------- | ----------------------------- | ---------------------------------- | ---------------- | ----------------- |
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
- **mAP<sup>val</sup>** 值是基于单模型单尺度在 [COCO val2017](https://cocodataset.org) 数据集上的结果。 <br>通过 `yolo val segment data=coco-seg.yaml device=0` 复现
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。 <br>通过 `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu` 复现
</details>
<details><summary>姿态 (COCO)</summary>
查看[姿态文档](https://docs.ultralytics.com/tasks/pose/)以获取这些在[COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/)上训练的模型的使用示例其中包括1个预训练类别即人。
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
| ---------------------------------------------------------------------------------------------------- | ------------------- | --------------------- | ------------------ | ----------------------------- | ---------------------------------- | ---------------- | ----------------- |
| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
- **mAP<sup>val</sup>** 值是基于单模型单尺度在 [COCO Keypoints val2017](https://cocodataset.org) 数据集上的结果。 <br>通过 `yolo val pose data=coco-pose.yaml device=0` 复现
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。 <br>通过 `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu` 复现
</details>
<details><summary>旋转检测 (DOTAv1)</summary>
查看[旋转检测文档](https://docs.ultralytics.com/tasks/obb/)以获取这些在[DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/)上训练的模型的使用示例其中包括15个预训练类别。
| 模型 | 尺寸<br><sup>(像素) | mAP<sup>test<br>50 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) |
| -------------------------------------------------------------------------------------------- | ------------------- | ------------------ | ----------------------------- | ---------------------------------- | ---------------- | ----------------- |
| [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-obb.pt) | 1024 | 78.0 | 204.77 | 3.57 | 3.1 | 23.3 |
| [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-obb.pt) | 1024 | 79.5 | 424.88 | 4.07 | 11.4 | 76.3 |
| [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-obb.pt) | 1024 | 80.5 | 763.48 | 7.61 | 26.4 | 208.6 |
| [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
| [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
- **mAP<sup>val</sup>** 值是基于单模型多尺度在 [DOTAv1](https://captain-whu.github.io/DOTA/index.html) 数据集上的结果。 <br>通过 `yolo val obb data=DOTAv1.yaml device=0 split=test` 复现
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 COCO val 图像进行平均计算的。 <br>通过 `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu` 复现
</details>
<details><summary>分类 (ImageNet)</summary>
查看[分类文档](https://docs.ultralytics.com/tasks/classify/)以获取这些在[ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/)上训练的模型的使用示例其中包括1000个预训练类别。
| 模型 | 尺寸<br><sup>(像素) | acc<br><sup>top1 | acc<br><sup>top5 | 速度<br><sup>CPU ONNX<br>(ms) | 速度<br><sup>A100 TensorRT<br>(ms) | 参数<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
| -------------------------------------------------------------------------------------------- | ------------------- | ---------------- | ---------------- | ----------------------------- | ---------------------------------- | ---------------- | ------------------------ |
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-cls.pt) | 224 | 78.3 | 94.2 | 163.0 | 0.87 | 37.5 | 99.7 |
| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
- **acc** 值是模型在 [ImageNet](https://www.image-net.org/) 数据集验证集上的准确率。 <br>通过 `yolo val classify data=path/to/ImageNet device=0` 复现
- **速度** 是使用 [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) 实例对 ImageNet val 图像进行平均计算的。 <br>通过 `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu` 复现
</details>
## <div align="center">集成</div>
我们与领先的AI平台的关键整合扩展了Ultralytics产品的功能增强了数据集标签化、训练、可视化和模型管理等任务。探索Ultralytics如何与[Roboflow](https://roboflow.com/?ref=ultralytics)、ClearML、[Comet](https://bit.ly/yolov8-readme-comet)、Neural Magic以及[OpenVINO](https://docs.ultralytics.com/integrations/openvino)合作优化您的AI工作流程。
<br>
<a href="https://ultralytics.com/hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations"></a>
<br>
<br>
<div align="center">
<a href="https://roboflow.com/?ref=ultralytics">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-roboflow.png" width="10%" alt="Roboflow logo"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
<a href="https://clear.ml/">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-clearml.png" width="10%" alt="ClearML logo"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
<a href="https://bit.ly/yolov8-readme-comet">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" alt="Comet ML logo"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
<a href="https://bit.ly/yolov5-neuralmagic">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="NeuralMagic logo"></a>
</div>
| Roboflow | ClearML ⭐ NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW |
| :-------------------------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------: |
| 使用 [Roboflow](https://roboflow.com/?ref=ultralytics) 将您的自定义数据集直接标记并导出至 YOLOv8 进行训练 | 使用 [ClearML](https://clear.ml/)(开源!)自动跟踪、可视化,甚至远程训练 YOLOv8 | 免费且永久,[Comet](https://bit.ly/yolov8-readme-comet) 让您保存 YOLOv8 模型、恢复训练,并以交互式方式查看和调试预测 | 使用 [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) 使 YOLOv8 推理速度提高多达 6 倍 |
## <div align="center">Ultralytics HUB</div>
体验 [Ultralytics HUB](https://ultralytics.com/hub) ⭐ 带来的无缝 AI这是一个一体化解决方案用于数据可视化、YOLOv5 和即将推出的 YOLOv8 🚀 模型训练和部署,无需任何编码。通过我们先进的平台和用户友好的 [Ultralytics 应用程序](https://ultralytics.com/app_install),轻松将图像转化为可操作的见解,并实现您的 AI 愿景。现在就开始您的**免费**之旅!
<a href="https://ultralytics.com/hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>
## <div align="center">贡献</div>
我们喜欢您的参与没有社区的帮助YOLOv5 和 YOLOv8 将无法实现。请参阅我们的[贡献指南](https://docs.ultralytics.com/help/contributing)以开始使用,并填写我们的[调查问卷](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey)向我们提供您的使用体验反馈。感谢所有贡献者的支持!🙏
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" alt="Ultralytics open-source contributors"></a>
## <div align="center">许可证</div>
Ultralytics 提供两种许可证选项以适应各种使用场景:
- **AGPL-3.0 许可证**:这个[OSI 批准](https://opensource.org/licenses/)的开源许可证非常适合学生和爱好者,可以推动开放的协作和知识分享。请查看[LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) 文件以了解更多细节。
- **企业许可证**:专为商业用途设计,该许可证允许将 Ultralytics 的软件和 AI 模型无缝集成到商业产品和服务中,从而绕过 AGPL-3.0 的开源要求。如果您的场景涉及将我们的解决方案嵌入到商业产品中,请通过 [Ultralytics Licensing](https://ultralytics.com/license)与我们联系。
## <div align="center">联系方式</div>
对于 Ultralytics 的错误报告和功能请求,请访问 [GitHub Issues](https://github.com/ultralytics/ultralytics/issues),并加入我们的 [Discord](https://ultralytics.com/discord) 社区进行问题和讨论!
<br>
<div align="center">
<a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="Ultralytics GitHub"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="Ultralytics LinkedIn"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="3%" alt="Ultralytics BiliBili"></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
<a href="https://ultralytics.com/discord"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
</div>

502
YOLOV5配置文件.md Normal file
View File

@ -0,0 +1,502 @@
### YOLOV5的内容已停止更新
### YOLOV5 (本项目下的YOLOV5不是官方YOLOV5的结构头部使用的是AnchorFree+DFL+TAL也就是YOLOV8的Head和Loss) [官方预训练权重github链接](https://github.com/ultralytics/assets/releases)
#### YOLOV5的使用方式跟YOLOV8一样,就是选择配置文件选择v5的即可.
1. ultralytics/cfg/models/v5/yolov5-fasternet.yaml
fasternet替换yolov5主干.
2. ultralytics/cfg/models/v5/yolov5-timm.yaml
使用timm支持的主干网络替换yolov5主干.timm的内容可看[这期视频](https://www.bilibili.com/video/BV1Mx4y1A7jy/)
3. ultralytics/cfg/models/v5/yolov5-dyhead.yaml
添加基于注意力机制的目标检测头到yolov5中.
4. 增加Adaptive Training Sample Selection匹配策略.
在ultralytics/utils/loss.py中的class v8DetectionLoss中自行选择对应的self.assigner即可.
此ATSS匹配策略目前占用显存比较大,因此使用的时候需要设置更小的batch,后续会进行优化这一功能.
5. Asymptotic Feature Pyramid Network[reference](https://github.com/gyyang23/AFPN/tree/master)
a. ultralytics/cfg/models/v5/yolov5-AFPN-P345.yaml
b. ultralytics/cfg/models/v5/yolov5-AFPN-P345-Custom.yaml
c. ultralytics/cfg/models/v5/yolov5-AFPN-P2345.yaml
d. ultralytics/cfg/models/v5/yolov5-AFPN-P2345-Custom.yaml
其中Custom中的block具体支持[链接](#b) [B站介绍说明](https://www.bilibili.com/video/BV1bh411A7yj/)
6. ultralytics/cfg/models/v5/yolov5-bifpn.yaml
添加BIFPN到yolov5中.
其中BIFPN中有三个可选参数
1. Fusion
其中BIFPN中的Fusion模块支持四种: weight, adaptive, concat, bifpn(default), SDI
其中weight, adaptive, concat出自[paper链接-Figure 3](https://openreview.net/pdf?id=q2ZaVU6bEsT), SDI出自[U-NetV2](https://github.com/yaoppeng/U-Net_v2)
2. node_mode
其中目前(后续会更新喔)支持这些[结构](#b)
3. head_channel
BIFPN中的通道数,默认设置为256.
7. ultralytics/cfg/models/v5/yolov5-C3-CloAtt.yaml
使用C3-CloAtt替换C3.(使用CloFormer中的具有全局和局部特征的注意力机制添加到C3中的Bottleneck中)(需要看[常见错误和解决方案的第五点](#a))
8. ultralytics/cfg/models/v5/yolov5-RevCol.yaml
使用(ICLR2023)Reversible Column Networks对yolov5主干进行重设计.
9. ultralytics/cfg/models/v5/yolov5-LSKNet.yaml
LSKNet(2023旋转目标检测SOTA的主干)替换yolov5主干.
10. ultralytics/cfg/models/v5/yolov5-C3-SCConv.yaml
SCConv(CVPR2020 http://mftp.mmcheng.net/Papers/20cvprSCNet.pdf)与C3融合.
11. ultralytics/cfg/models/v5/yolov5-C3-SCcConv.yaml
ScConv(CVPR2023 https://openaccess.thecvf.com/content/CVPR2023/papers/Li_SCConv_Spatial_and_Channel_Reconstruction_Convolution_for_Feature_Redundancy_CVPR_2023_paper.pdf)与C3融合.
(取名为SCcConv的原因是在windows下命名是不区分大小写的)
12. MPDiou.[论文链接](https://arxiv.org/pdf/2307.07662v1.pdf)
在ultralytics/utils/loss.py中的BboxLoss class中的forward函数里面进行更换对应的iou计算方式.
13. ultralytics/cfg/models/v5/yolov5-LAWDS.yaml
Light Adaptive-weight downsampling.自研模块,具体讲解请看百度云链接中的视频.
14. ultralytics/cfg/models/v5/yolov5-C3-EMSC.yaml
Efficient Multi-Scale Conv.自研模块,具体讲解请看百度云链接中的视频.
15. ultralytics/cfg/models/v5/yolov5-C3-EMSCP.yaml
Efficient Multi-Scale Conv Plus.自研模块,具体讲解请看百度云链接中的视频.
16. ultralytics/cfg/models/v5/yolov5-RCSOSA.yaml
使用[RCS-YOLO](https://github.com/mkang315/RCS-YOLO/tree/main)中的RCSOSA替换C3.
17. ultralytics/cfg/models/v5/yolov5-KernelWarehouse.yaml
使用[Towards Parameter-Efficient Dynamic Convolution](https://github.com/OSVAI/KernelWarehouse)添加到yolov5中.
使用此模块需要注意,在epoch0-20的时候精度会非常低,过了20epoch会正常.
18. Normalized Gaussian Wasserstein Distance.[论文链接](https://arxiv.org/abs/2110.13389)
在Loss中使用:
在ultralytics/utils/loss.py中的BboxLoss class中的__init__函数里面设置self.nwd_loss为True.
比例系数调整self.iou_ratio, self.iou_ratio代表iou的占比,(1-self.iou_ratio)为代表nwd的占比.
在TAL标签分配中使用:
在ultralytics/utils/tal.py中的def iou_calculation函数中进行更换即可.
以上这两可以配合使用,也可以单独使用.
19. SlideLoss and EMASlideLoss.[Yolo-Face V2](https://github.com/Krasjet-Yu/YOLO-FaceV2/blob/master/utils/loss.py)
在ultralytics/utils/loss.py中的class v8DetectionLoss进行设定.
20. ultralytics/cfg/models/v5/yolov5-C3-DySnakeConv.yaml
[DySnakeConv](https://github.com/YaoleiQi/DSCNet)与C3融合.
21. ultralytics/cfg/models/v5/yolov5-EfficientHead.yaml
对检测头进行重设计,支持10种轻量化检测头.详细请看ultralytics/nn/extra_modules/head.py中的Detect_Efficient class.
22. ultralytics/cfg/models/v5/yolov5-aux.yaml
参考YOLOV7-Aux对YOLOV5添加额外辅助训练头,在训练阶段参与训练,在最终推理阶段去掉.
其中辅助训练头的损失权重系数可在ultralytics/utils/loss.py中的class v8DetectionLoss中的__init__函数中的self.aux_loss_ratio设定,默认值参考yolov7为0.25.
23. ultralytics/cfg/models/v5/yolov5-C3-DCNV2.yaml
使用C3-DCNV2替换C3.(DCNV2为可变形卷积V2)
24. ultralytics/cfg/models/v5/yolov5-C3-DCNV3.yaml
使用C3-DCNV3替换C3.([DCNV3](https://github.com/OpenGVLab/InternImage)为可变形卷积V3(CVPR2023,众多排行榜的SOTA))
官方中包含了一些指定版本的DCNV3 whl包,下载后直接pip install xxx即可.具体和安装DCNV3可看百度云链接中的视频.
25. ultralytics/cfg/models/v5/yolov5-C3-Faster.yaml
使用C3-Faster替换C3.(使用FasterNet中的FasterBlock替换C3中的Bottleneck)
26. ultralytics/cfg/models/v5/yolov5-C3-ODConv.yaml
使用C3-ODConv替换C3.(使用ODConv替换C3中的Bottleneck中的Conv)
27. ultralytics/cfg/models/v5/yolov5-C3-Faster-EMA.yaml
使用C3-Faster-EMA替换C3.(C3-Faster-EMA推荐可以放在主干上,Neck和head部分可以选择C3-Faster)
28. ultralytics/cfg/models/v5/yolov5-dyhead-DCNV3.yaml
使用[DCNV3](https://github.com/OpenGVLab/InternImage)替换DyHead中的DCNV2.
29. ultralytics/cfg/models/v5/yolov5-FocalModulation.yaml
使用[Focal Modulation](https://github.com/microsoft/FocalNet)替换SPPF.
30. ultralytics/cfg/models/v5/yolov5-C3-DBB.yaml
使用C3-DBB替换C3.(使用DiverseBranchBlock替换C3中的Bottleneck中的Conv)
31. ultralytics/cfg/models/v5/yolov5-C3-OREPA.yaml
使用C3-OREPA替换C2f.[Online Convolutional Re-parameterization (CVPR2022)](https://github.com/JUGGHM/OREPA_CVPR2022/tree/main)
32. ultralytics/cfg/models/v5/yolov5-C3-REPVGGOREPA.yaml
使用C3-REPVGGOREPA替换C3.[Online Convolutional Re-parameterization (CVPR2022)](https://github.com/JUGGHM/OREPA_CVPR2022/tree/main)
33. ultralytics/cfg/models/v5/yolov5-swintransformer.yaml
SwinTransformer-Tiny替换yolov5主干.
34. ultralytics/cfg/models/v5/yolov5-repvit.yaml
[CVPR2024 RepViT](https://github.com/THU-MIG/RepViT/tree/main)替换yolov5主干.
35. ultralytics/cfg/models/v5/yolov5-fasternet-bifpn.yaml
fasternet与bifpn的结合.
其中BIFPN中有三个可选参数
1. Fusion
其中BIFPN中的Fusion模块支持四种: weight, adaptive, concat, bifpn(default), SDI
其中weight, adaptive, concat出自[paper链接-Figure 3](https://openreview.net/pdf?id=q2ZaVU6bEsT), SDI出自[U-NetV2](https://github.com/yaoppeng/U-Net_v2)
2. node_mode
其中目前(后续会更新喔)支持这些[结构](#b)
3. head_channel
BIFPN中的通道数,默认设置为256.
36. ultralytics/cfg/models/v5/yolov5-C3-DCNV2-Dynamic.yaml
利用自研注意力机制MPCA强化DCNV2中的offset和mask.
37. ultralytics/cfg/models/v5/yolov5-goldyolo.yaml
利用华为2023最新GOLD-YOLO中的Gatherand-Distribute进行改进特征融合模块
38. ultralytics/cfg/models/v5/yolov5-C3-ContextGuided.yaml
使用[CGNet](https://github.com/wutianyiRosun/CGNet/tree/master)中的Light-weight Context Guided改进C3.
39. ultralytics/cfg/models/v5/yolov5-ContextGuidedDown.yaml
使用[CGNet](https://github.com/wutianyiRosun/CGNet/tree/master)中的Light-weight Context Guided DownSample进行下采样.
40. ultralytics/cfg/models/v5/yolov5-C3-MSBlock.yaml
使用[YOLO-MS](https://github.com/FishAndWasabi/YOLO-MS/tree/main)中的MSBlock改进C3.
41. ultralytics/cfg/models/v5/yolov5-C3-DLKA.yaml
使用[deformableLKA](https://github.com/xmindflow/deformableLKA)改进C3.
42. ultralytics/cfg/models/v5/yolov5-GFPN.yaml
使用[DAMO-YOLO](https://github.com/tinyvision/DAMO-YOLO)中的RepGFPN改进Neck.
43. ultralytics/cfg/models/v5/yolov5-SPDConv.yaml
使用[SPDConv](https://github.com/LabSAINT/SPD-Conv/tree/main)进行下采样.
44. ultralytics/cfg/models/v5/yolov5-EfficientRepBiPAN.yaml
使用[YOLOV6](https://github.com/meituan/YOLOv6/tree/main)中的EfficientRepBiPAN改进Neck.
45. ultralytics/cfg/models/v5/yolov5-C3-EMBC.yaml
使用[Efficientnet](https://blog.csdn.net/weixin_43334693/article/details/131114618?spm=1001.2014.3001.5501)中的MBConv与EffectiveSE改进C3.
46. ultralytics/cfg/models/v5/yolov5-SPPF-LSKA.yaml
使用[LSKA](https://github.com/StevenLauHKHK/Large-Separable-Kernel-Attention)注意力机制改进SPPF,增强多尺度特征提取能力.
47. ultralytics/cfg/models/v5/yolov5-C3-DAttention.yaml
使用[Vision Transformer with Deformable Attention(CVPR2022)](https://github.com/LeapLabTHU/DAT)改进C2f.(需要看[常见错误和解决方案的第五点](#a))
使用注意点请看百度云视频.使用注意点请看百度云视频.(DAttention(Vision Transformer with Deformable Attention CVPR2022)使用注意说明.)
48. ultralytics/cfg/models/v5/yolov5-CSwinTransformer.yaml
使用[CSWin-Transformer(CVPR2022)](https://github.com/microsoft/CSWin-Transformer/tree/main)替换yolov5主干.(需要看[常见错误和解决方案的第五点](#a))
49. ultralytics/cfg/models/v5/yolov5-AIFI.yaml
使用[RT-DETR](https://arxiv.org/pdf/2304.08069.pdf)中的Attention-based Intrascale Feature Interaction(AIFI)改进yolov5.
50. ultralytics/cfg/models/v5/yolov5-C3-Parc.yaml
使用[ParC-Net](https://github.com/hkzhang-git/ParC-Net/tree/main)中的ParC_Operator改进C3.(需要看[常见错误和解决方案的第五点](#a))
使用注意点请看百度云视频.(20231031更新说明)
51. ultralytics/cfg/models/v5/yolov5-C3-DWR.yaml
使用[DWRSeg](https://arxiv.org/abs/2212.01173)中的Dilation-wise Residual(DWR)模块,加强从网络高层的可扩展感受野中提取特征.
52. ultralytics/cfg/models/v5/yolov5-C3-RFAConv.yaml
使用[RFAConv](https://github.com/Liuchen1997/RFAConv/tree/main)中的RFAConv改进yolov5.
53. ultralytics/cfg/models/v5/yolov5-C3-RFCBAMConv.yaml
使用[RFAConv](https://github.com/Liuchen1997/RFAConv/tree/main)中的RFCBAMConv改进yolov5.
54. ultralytics/cfg/models/v8/yolov5-C3-RFCAConv.yaml
使用[RFAConv](https://github.com/Liuchen1997/RFAConv/tree/main)中的RFCAConv改进yolov5.
55. ultralytics/cfg/models/v5/yolov5-HGNetV2.yaml
使用HGNetV2作为YOLOV5的backbone.
56. ultralytics/cfg/models/v5/yolov5-GhostHGNetV2.yaml
使用Ghost_HGNetV2作为YOLOV5的backbone.
57. ultralytics/cfg/models/v5/yolov5-RepHGNetV2.yaml
使用Rep_HGNetV2作为YOLOV5的backbone.
58. ultralytics/cfg/models/v5/yolov5-C3-FocusedLinearAttention.yaml
使用[FLatten Transformer(ICCV2023)](https://github.com/LeapLabTHU/FLatten-Transformer)中的FocusedLinearAttention改进C3.(需要看[常见错误和解决方案的第五点](#a))
使用注意点请看百度云视频.(20231114版本更新说明.)
59. IoU,GIoU,DIoU,CIoU,EIoU,SIoU更换方法.
请看百度云视频.(20231114版本更新说明.)
60. Inner-IoU,Inner-GIoU,Inner-DIoU,Inner-CIoU,Inner-EIoU,Inner-SIoU更换方法.
请看百度云视频.(20231114版本更新说明.)
61. Inner-MPDIoU更换方法.
请看百度云视频.(20231114版本更新说明.)
62. ultralytics/cfg/models/v5/yolov5-C3-MLCA.yaml
使用[Mixed Local Channel Attention 2023](https://github.com/wandahangFY/MLCA/tree/master)改进C3.(用法请看百度云视频-20231129版本更新说明)
63. ultralytics/cfg/models/v5/yolov5-C3-AKConv.yaml
使用[AKConv 2023](https://github.com/CV-ZhangXin/AKConv)改进C3.(用法请看百度云视频-20231129版本更新说明)
64. ultralytics/cfg/models/v5/yolov5-unireplknet.yaml
使用[UniRepLKNet](https://github.com/AILab-CVC/UniRepLKNet/tree/main)替换yolov5主干.
65. ultralytics/cfg/models/v5/yolov5-C3-UniRepLKNetBlock.yaml
使用[UniRepLKNet](https://github.com/AILab-CVC/UniRepLKNet/tree/main)中的UniRepLKNetBlock改进C3.
66. ultralytics/cfg/models/v5/yolov5-C3-DRB.yaml
使用[UniRepLKNet](https://github.com/AILab-CVC/UniRepLKNet/tree/main)中的DilatedReparamBlock改进C3.
67. ultralytics/cfg/models/v5/yolov5-C3-DWR-DRB.yaml
使用[UniRepLKNet](https://github.com/AILab-CVC/UniRepLKNet/tree/main)中的DilatedReparamBlock对[DWRSeg](https://arxiv.org/abs/2212.01173)中的Dilation-wise Residual(DWR)的模块进行二次创新后改进C3.
68. ultralytics/cfg/models/v5/yolov5-ASF.yaml
使用使用[ASF-YOLO](https://github.com/mkang315/ASF-YOLO)中的Attentional Scale Sequence Fusion改进yolov5.
69. ultralytics/cfg/models/v5/yolov5-ASF-P2.yaml
在ultralytics/cfg/models/v8/yolov8-ASF.yaml的基础上进行二次创新引入P2检测层并对网络结构进行优化.
70. ultralytics/cfg/models/v5/yolov5-CSP-EDLAN.yaml
使用[DualConv](https://github.com/ChipsGuardian/DualConv)打造CSP Efficient Dual Layer Aggregation Networks改进yolov5.
71. ultralytics/cfg/models/v5/yolov5-TransNeXt.yaml
使用[TransNeXt](https://github.com/DaiShiResearch/TransNeXt)改进yolov5的backbone.(需要看[常见错误和解决方案的第五点](#a))
72. ultralytics/cfg/models/v5/yolov5-AggregatedAttention.yaml
使用[TransNeXt](https://github.com/DaiShiResearch/TransNeXt)中的聚合感知注意力改进yolov5的backbone.(需要看[常见错误和解决方案的第五点](#a))
73. ultralytics/cfg/models/v5/yolov5-C3-AggregatedAtt.yaml
使用[TransNeXt](https://github.com/DaiShiResearch/TransNeXt)中的聚合感知注意力改进C3.(需要看[常见错误和解决方案的第五点](#a))
74. ultralytics/cfg/models/v5/yolov5-bifpn-SDI.yaml
使用[U-NetV2](https://github.com/yaoppeng/U-Net_v2)中的 Semantics and Detail Infusion Module对BIFPN进行二次创新.
75. ultralytics/cfg/models/v5/yolov5-SDI.yaml
使用[U-NetV2](https://github.com/yaoppeng/U-Net_v2)中的 Semantics and Detail Infusion Module对yolov5中的feature fusion部分进行重设计.
76. Shape-IoU,Inner-Shape-IoU更换方法.
请看百度云视频.(20240104版本更新说明.)
77. FocalLoss,VarifocalLoss,QualityfocalLoss更换方法.
请看百度云视频.(20240111版本更新说明.)
78. Wise-IoU(v1,v2,v3)系列(IoU,WIoU,EIoU,GIoU,DIoU,CIoU,SIoU,MPDIoU,ShapeIoU)更换方法.
请看百度云视频.(20240111版本更新说明.)
79. Inner-Wise-IoU(v1,v2,v3)系列(IoU,WIoU,EIoU,GIoU,DIoU,CIoU,SIoU,MPDIoU,ShapeIoU)更换方法.
请看百度云视频.(20240111版本更新说明.)
80. ultralytics/cfg/models/v8/yolov8-goldyolo-asf.yaml
利用华为2023最新GOLD-YOLO中的Gatherand-Distribute与[ASF-YOLO](https://github.com/mkang315/ASF-YOLO)中的Attentional Scale Sequence Fusion进行二次创新改进yolov8的neck.
81. ultralytics/cfg/models/v5/yolov5-C2-DCNV4.yaml
使用[DCNV4](https://github.com/OpenGVLab/DCNv4)改进C3.(请关闭AMP进行训练,使用教程请看20240116版本更新说明)
82. ultralytics/cfg/models/v5/yolov5-dyhead-DCNV4.yaml
使用[DCNV4](https://github.com/OpenGVLab/DCNv4)对DyHead进行二次创新.(请关闭AMP进行训练,使用教程请看20240116版本更新说明)
83. ultralytics/cfg/models/v5/yolov5-HSFPN.yaml
使用[MFDS-DETR](https://github.com/JustlfC03/MFDS-DETR)中的HS-FPN改进yolov5的neck.
84. ultralytics/cfg/models/v5/yolov5-HSPAN.yaml
对[MFDS-DETR](https://github.com/JustlfC03/MFDS-DETR)中的HS-FPN进行二次创新后得到HSPAN改进yolov5的neck.
85. soft-nms(IoU,GIoU,DIoU,CIoU,EIoU,SIoU,ShapeIoU)
soft-nms替换nms.(建议:仅在val.py时候使用,具体替换请看20240122版本更新说明)
86. ultralytics/cfg/models/v5/yolov5-dysample.yaml
使用[ICCV2023 DySample](https://arxiv.org/abs/2308.15085)改进yolov5-neck中的上采样.
87. ultralytics/cfg/models/v5/yolov5-CARAFE.yaml
使用[ICCV2019 CARAFE](https://arxiv.org/abs/1905.02188)改进yolov5-neck中的上采样.
88. ultralytics/cfg/models/v5/yolov5-HWD.yaml
使用[Haar wavelet downsampling](https://www.sciencedirect.com/science/article/abs/pii/S0031320323005174)改进yolov5的下采样.(请关闭AMP情况下使用)
89. Focaler-IoU系列(IoU,GIoU,DIoU,CIoU,EIoU,SIoU,WIoU,MPDIoU,ShapeIoU)
请看百度云视频.(20240203更新说明)
90. ultralytics/cfg/models/v5/yolov5-GDFPN.yaml
使用[DAMO-YOLO](https://github.com/tinyvision/DAMO-YOLO)中的RepGFPN与[ICCV2023 DySample](https://arxiv.org/abs/2308.15085)进行二次创新改进Neck.
91. ultralytics/cfg/models/v5/yolov5-HSPAN-DySample.yaml
对[MFDS-DETR](https://github.com/JustlfC03/MFDS-DETR)中的HS-FPN进行二次创新后得到HSPAN再进行创新,使用[ICCV2023 DySample](https://arxiv.org/abs/2308.15085)改进其上采样模块.
92. ultralytics/cfg/models/v5/yolov5-ASF-DySample.yaml
使用[ASF-YOLO](https://github.com/mkang315/ASF-YOLO)中的Attentional Scale Sequence Fusion与[ICCV2023 DySample](https://arxiv.org/abs/2308.15085)组合得到Dynamic Sample Attentional Scale Sequence Fusion.
93. ultralytics/cfg/models/v5/yolov5-SEAMHead.yaml
使用[YOLO-Face V2](https://arxiv.org/pdf/2208.02019v2.pdf)中的遮挡感知注意力改进Head,使其有效地处理遮挡场景.
94. ultralytics/cfg/models/v5/yolov5-MultiSEAMHead.yaml
使用[YOLO-Face V2](https://arxiv.org/pdf/2208.02019v2.pdf)中的遮挡感知注意力改进Head,使其有效地处理遮挡场景.
95. ultralytics/cfg/models/v5/yolov5-C3-SWC.yaml
使用[shift-wise conv](https://arxiv.org/abs/2401.12736)改进yolov5中的C3.
96. ultralytics/cfg/models/v5/yolov5-C3-iRMB.yaml
使用[EMO ICCV2023](https://github.com/zhangzjn/EMO)中的iRMB改进C3.
97. ultralytics/cfg/models/v5/yolov5-C3-iRMB-Cascaded.yaml
使用[EfficientViT CVPR2023](https://github.com/microsoft/Cream/tree/main/EfficientViT)中的CascadedGroupAttention对[EMO ICCV2023](https://github.com/zhangzjn/EMO)中的iRMB进行二次创新来改进C3.
98. ultralytics/cfg/models/v5/yolov5-C3-iRMB-DRB.yaml
使用[UniRepLKNet](https://github.com/AILab-CVC/UniRepLKNet/tree/main)中的DilatedReparamBlock对[EMO ICCV2023](https://github.com/zhangzjn/EMO)中的iRMB进行二次创新来改进C3.
99. ultralytics/cfg/models/v5/yolov5-C3-iRMB-SWC.yaml
使用[shift-wise conv](https://arxiv.org/abs/2401.12736)对[EMO ICCV2023](https://github.com/zhangzjn/EMO)中的iRMB进行二次创新来改进C3.
100. ultralytics/cfg/models/v5/yolov5-C3-VSS.yaml
使用最新的Mamba架构[Mamba-UNet中的VSS](https://github.com/ziyangwang007/Mamba-UNet)对C2f中的BottleNeck进行改进,使其能更有效地捕获图像中的复杂细节和更广泛的语义上下文.
101. ultralytics/cfg/models/v5/yolov5-C3-LVMB.yaml
使用最新的Mamba架构[Mamba-UNet中的VSS](https://github.com/ziyangwang007/Mamba-UNet)与Cross Stage Partial进行结合,使其能更有效地捕获图像中的复杂细节和更广泛的语义上下文.
102. ultralytics/cfg/models/v5/yolov5-RepNCSPELAN.yaml
使用[YOLOV9](https://github.com/WongKinYiu/yolov9)中的RepNCSPELAN进行改进yolov5.
# 常见错误和解决方案(如果是跑自带的一些配置文件报错可以先看看第十大点对应的配置文件是否有提示需要修改内容)
1. RuntimeError: xxxxxxxxxxx does not have a deterministic implementation, but you set 'torch.use_deterministic_algorithms(True)'.....
解决方案在ultralytics/utils/torch_utils.py中init_seeds函数中把torch.use_deterministic_algorithms里面的True改为False
2. ModuleNotFoundErrorNo module named xxx
解决方案缺少对应的包先把YOLOV8环境配置的安装命令进行安装一下如果还是缺少显示缺少包安装对应的包即可(xxx就是对应的包).
3. OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.
解决方案https://zhuanlan.zhihu.com/p/599835290
4. 训练过程中loss出现nan.
可以尝试关闭AMP混合精度训练.(train.py中加amp=False)
<a id="a"></a>
5. 固定640x640尺寸的解决方案.
运行train.py中的时候需要在ultralytics/models/yolo/detect/train.py的DetectionTrainer class中的build_dataset函数中的rect=mode == 'val'改为rect=False.其他模型可以修改回去.
运行val.py的时候,把val.py的rect=False注释取消即可.其他模型可以修改回去.
运行detect.py中的时候需要在ultralytics/engine/predictor.py找到函数def pre_transform(self, im),在LetterBox中的auto改为False,其他模型可以修改回去.
6. 多卡训练问题.[参考链接](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training/#multi-gpu-dataparallel-mode-not-recommended:~:text=just%201%20GPU.-,Multi%2DGPU%20DistributedDataParallel%20Mode%20(%E2%9C%85%20recommended),-You%20will%20have)
python -m torch.distributed.run --nproc_per_node 2 train.py
7. 指定显卡训练.
1. 使用device参数进行指定.
2. 参考链接:https://blog.csdn.net/m0_55097528/article/details/130323125, 简单来说就是用这个来代替device参数.
8. ValueError: Expected more than 1 value per channel when training, got input size torch.Size...
如果是在训练情况下的验证阶段出现的话,大概率就是最后一个验证的batch为1,这种情况只需要把验证集多一张或者少一张即可,或者变更batch参数.
9. AttributeError: Can't pickle local object 'EMASlideLoss.__init__.<locals>.<lambda>'
可以在ultralytics/utils/loss.py中添加import dill as pickle,然后装一下dill这个包.
pip install dill -i https://pypi.tuna.tsinghua.edu.cn/simple
10. RuntimeError: Dataset 'xxxxx' error ❌
将data.yaml中的路径都改为绝对路径.
11. WARNING NMS time limit 2.100s exceeded
在ultralytics/utils/ops.py中non_max_suppression函数里面找到这个语句
time_limit = 2.0 + max_time_img * bs # seconds to quit after
前面的2.0自己改大点即可大到不会出现这个NMS time limit即可.
12. OSError: [WinError 1455] 页面文件太小,无法完成操作。
此问题常见于windows训练.一般情况下有两种解决方案:
1. 把workers设置小点直接不会报错.最小为0
2. 扩大虚拟内存(可百度).

2347
YOLOV8V10配置文件.md Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000001.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>416</width>
<height>323</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>208</xmin>
<ymin>50</ymin>
<xmax>273</xmax>
<ymax>151</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000002.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>501</width>
<height>355</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>212</xmin>
<ymin>150</ymin>
<xmax>264</xmax>
<ymax>169</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000003.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>500</width>
<height>403</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>79</xmin>
<ymin>175</ymin>
<xmax>123</xmax>
<ymax>262</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000004.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>502</width>
<height>332</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>164</xmin>
<ymin>132</ymin>
<xmax>226</xmax>
<ymax>150</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000005.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>420</width>
<height>317</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>167</xmin>
<ymin>166</ymin>
<xmax>231</xmax>
<ymax>204</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,50 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000006.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>501</width>
<height>357</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>101</xmin>
<ymin>136</ymin>
<xmax>181</xmax>
<ymax>185</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>343</xmin>
<ymin>153</ymin>
<xmax>396</xmax>
<ymax>180</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>266</xmin>
<ymin>242</ymin>
<xmax>279</xmax>
<ymax>302</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000007.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>417</width>
<height>322</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>249</xmin>
<ymin>202</ymin>
<xmax>306</xmax>
<ymax>226</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000008.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>404</width>
<height>313</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>195</xmin>
<ymin>257</ymin>
<xmax>266</xmax>
<ymax>281</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000009.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>401</width>
<height>307</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>136</xmin>
<ymin>84</ymin>
<xmax>198</xmax>
<ymax>105</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000010.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>441</width>
<height>324</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>234</xmin>
<ymin>118</ymin>
<xmax>283</xmax>
<ymax>158</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000011.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>467</width>
<height>391</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>149</xmin>
<ymin>75</ymin>
<xmax>214</xmax>
<ymax>181</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000012.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>462</width>
<height>308</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>137</xmin>
<ymin>101</ymin>
<xmax>162</xmax>
<ymax>170</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000013.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>499</width>
<height>331</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>355</xmin>
<ymin>152</ymin>
<xmax>416</xmax>
<ymax>176</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000014.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>408</width>
<height>310</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>58</xmin>
<ymin>142</ymin>
<xmax>212</xmax>
<ymax>168</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,50 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000015.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>385</width>
<height>258</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>215</xmin>
<ymin>36</ymin>
<xmax>370</xmax>
<ymax>69</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>61</xmin>
<ymin>112</ymin>
<xmax>169</xmax>
<ymax>139</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>66</xmin>
<ymin>147</ymin>
<xmax>181</xmax>
<ymax>174</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000016.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>427</width>
<height>283</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>35</xmin>
<ymin>30</ymin>
<xmax>191</xmax>
<ymax>98</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,38 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000017.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>500</width>
<height>354</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>82</xmin>
<ymin>224</ymin>
<xmax>135</xmax>
<ymax>241</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>360</xmin>
<ymin>108</ymin>
<xmax>416</xmax>
<ymax>129</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,38 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000018.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>389</width>
<height>318</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>87</xmin>
<ymin>171</ymin>
<xmax>197</xmax>
<ymax>281</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>213</xmin>
<ymin>49</ymin>
<xmax>331</xmax>
<ymax>171</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000019.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>418</width>
<height>355</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>147</xmin>
<ymin>112</ymin>
<xmax>230</xmax>
<ymax>198</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000020.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>366</width>
<height>345</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>93</xmin>
<ymin>166</ymin>
<xmax>270</xmax>
<ymax>206</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000021.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>426</width>
<height>361</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>165</xmin>
<ymin>202</ymin>
<xmax>316</xmax>
<ymax>237</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000022.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>367</width>
<height>338</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>95</xmin>
<ymin>190</ymin>
<xmax>211</xmax>
<ymax>228</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000023.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>405</width>
<height>311</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>178</xmin>
<ymin>121</ymin>
<xmax>351</xmax>
<ymax>145</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000024.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>408</width>
<height>285</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>193</xmin>
<ymin>128</ymin>
<xmax>364</xmax>
<ymax>156</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000025.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>394</width>
<height>333</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>126</xmin>
<ymin>139</ymin>
<xmax>257</xmax>
<ymax>157</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000026.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>414</width>
<height>325</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>109</xmin>
<ymin>125</ymin>
<xmax>243</xmax>
<ymax>155</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000027.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>437</width>
<height>325</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>168</xmin>
<ymin>212</ymin>
<xmax>185</xmax>
<ymax>255</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000028.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>480</width>
<height>310</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>215</xmin>
<ymin>129</ymin>
<xmax>248</xmax>
<ymax>201</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000029.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>411</width>
<height>323</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>209</xmin>
<ymin>157</ymin>
<xmax>284</xmax>
<ymax>216</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000030.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>404</width>
<height>295</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>217</xmin>
<ymin>91</ymin>
<xmax>363</xmax>
<ymax>157</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,38 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000031.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>386</width>
<height>267</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>193</xmin>
<ymin>71</ymin>
<xmax>370</xmax>
<ymax>148</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>6</xmin>
<ymin>145</ymin>
<xmax>139</xmax>
<ymax>195</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000032.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>422</width>
<height>281</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>72</xmin>
<ymin>94</ymin>
<xmax>180</xmax>
<ymax>136</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000033.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>498</width>
<height>332</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>124</xmin>
<ymin>105</ymin>
<xmax>221</xmax>
<ymax>129</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000034.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>437</width>
<height>305</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>166</xmin>
<ymin>134</ymin>
<xmax>352</xmax>
<ymax>174</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000035.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>443</width>
<height>345</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>67</xmin>
<ymin>130</ymin>
<xmax>279</xmax>
<ymax>180</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000036.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>397</width>
<height>335</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>120</xmin>
<ymin>153</ymin>
<xmax>287</xmax>
<ymax>187</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000037.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>434</width>
<height>324</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>104</xmin>
<ymin>177</ymin>
<xmax>318</xmax>
<ymax>222</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000038.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>386</width>
<height>311</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>100</xmin>
<ymin>117</ymin>
<xmax>210</xmax>
<ymax>137</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000039.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>400</width>
<height>317</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>55</xmin>
<ymin>148</ymin>
<xmax>277</xmax>
<ymax>194</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000040.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>404</width>
<height>311</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>123</xmin>
<ymin>125</ymin>
<xmax>255</xmax>
<ymax>184</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000041.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>412</width>
<height>323</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>176</xmin>
<ymin>97</ymin>
<xmax>206</xmax>
<ymax>162</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000042.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>411</width>
<height>325</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>209</xmin>
<ymin>115</ymin>
<xmax>229</xmax>
<ymax>149</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,38 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000043.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>475</width>
<height>398</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>165</xmin>
<ymin>230</ymin>
<xmax>182</xmax>
<ymax>258</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>250</xmin>
<ymin>41</ymin>
<xmax>267</xmax>
<ymax>75</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000044.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>433</width>
<height>323</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>158</xmin>
<ymin>42</ymin>
<xmax>174</xmax>
<ymax>72</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000045.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>429</width>
<height>314</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>202</xmin>
<ymin>119</ymin>
<xmax>226</xmax>
<ymax>160</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,38 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000046.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>455</width>
<height>301</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>19</xmin>
<ymin>98</ymin>
<xmax>41</xmax>
<ymax>151</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>416</xmin>
<ymin>53</ymin>
<xmax>436</xmax>
<ymax>92</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,38 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000047.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>419</width>
<height>287</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>132</xmin>
<ymin>124</ymin>
<xmax>172</xmax>
<ymax>199</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>299</xmin>
<ymin>218</ymin>
<xmax>313</xmax>
<ymax>238</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000048.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>373</width>
<height>319</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>93</xmin>
<ymin>82</ymin>
<xmax>129</xmax>
<ymax>166</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,50 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000049.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>378</width>
<height>317</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>75</xmin>
<ymin>229</ymin>
<xmax>90</xmax>
<ymax>267</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>243</xmin>
<ymin>133</ymin>
<xmax>257</xmax>
<ymax>161</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>340</xmin>
<ymin>257</ymin>
<xmax>352</xmax>
<ymax>283</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,50 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000050.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>378</width>
<height>317</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>52</xmin>
<ymin>140</ymin>
<xmax>68</xmax>
<ymax>168</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>258</xmin>
<ymin>74</ymin>
<xmax>276</xmax>
<ymax>100</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>161</xmin>
<ymin>262</ymin>
<xmax>178</xmax>
<ymax>287</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,38 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000051.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>410</width>
<height>306</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>91</xmin>
<ymin>39</ymin>
<xmax>116</xmax>
<ymax>88</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>266</xmin>
<ymin>250</ymin>
<xmax>290</xmax>
<ymax>295</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000052.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>339</width>
<height>288</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>156</xmin>
<ymin>100</ymin>
<xmax>190</xmax>
<ymax>187</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,38 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000053.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>400</width>
<height>344</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>87</xmin>
<ymin>32</ymin>
<xmax>112</xmax>
<ymax>84</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>263</xmin>
<ymin>241</ymin>
<xmax>287</xmax>
<ymax>289</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000054.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>440</width>
<height>318</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>212</xmin>
<ymin>147</ymin>
<xmax>277</xmax>
<ymax>176</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000055.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>438</width>
<height>336</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>147</xmin>
<ymin>120</ymin>
<xmax>268</xmax>
<ymax>169</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000056.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>402</width>
<height>302</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>154</xmin>
<ymin>66</ymin>
<xmax>187</xmax>
<ymax>164</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000057.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>411</width>
<height>326</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>172</xmin>
<ymin>78</ymin>
<xmax>227</xmax>
<ymax>135</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,38 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000058.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>419</width>
<height>372</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>228</xmin>
<ymin>247</ymin>
<xmax>247</xmax>
<ymax>284</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>286</xmin>
<ymin>138</ymin>
<xmax>305</xmax>
<ymax>178</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,74 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000059.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>396</width>
<height>251</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>339</xmin>
<ymin>175</ymin>
<xmax>356</xmax>
<ymax>203</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>313</xmin>
<ymin>89</ymin>
<xmax>326</xmax>
<ymax>114</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>179</xmin>
<ymin>77</ymin>
<xmax>193</xmax>
<ymax>102</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>150</xmin>
<ymin>138</ymin>
<xmax>161</xmax>
<ymax>151</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>135</xmin>
<ymin>230</ymin>
<xmax>147</xmax>
<ymax>250</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,38 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000060.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>421</width>
<height>296</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>148</xmin>
<ymin>54</ymin>
<xmax>172</xmax>
<ymax>101</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>198</xmin>
<ymin>227</ymin>
<xmax>229</xmax>
<ymax>273</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,62 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000061.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>450</width>
<height>334</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>27</xmin>
<ymin>186</ymin>
<xmax>49</xmax>
<ymax>222</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>85</xmin>
<ymin>79</ymin>
<xmax>109</xmax>
<ymax>117</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>356</xmin>
<ymin>95</ymin>
<xmax>380</xmax>
<ymax>143</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>406</xmin>
<ymin>267</ymin>
<xmax>437</xmax>
<ymax>317</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000062.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>417</width>
<height>334</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>187</xmin>
<ymin>131</ymin>
<xmax>232</xmax>
<ymax>232</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000063.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>448</width>
<height>358</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>204</xmin>
<ymin>109</ymin>
<xmax>257</xmax>
<ymax>204</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000064.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>427</width>
<height>313</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>207</xmin>
<ymin>106</ymin>
<xmax>250</xmax>
<ymax>178</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,38 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000065.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>498</width>
<height>373</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>84</xmin>
<ymin>237</ymin>
<xmax>125</xmax>
<ymax>303</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>198</xmin>
<ymin>23</ymin>
<xmax>241</xmax>
<ymax>98</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000066.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>381</width>
<height>339</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>122</xmin>
<ymin>125</ymin>
<xmax>210</xmax>
<ymax>184</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000067.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>483</width>
<height>319</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>227</xmin>
<ymin>70</ymin>
<xmax>296</xmax>
<ymax>153</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000068.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>419</width>
<height>328</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>209</xmin>
<ymin>74</ymin>
<xmax>252</xmax>
<ymax>137</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000069.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>316</width>
<height>256</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>132</xmin>
<ymin>107</ymin>
<xmax>204</xmax>
<ymax>139</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000070.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>383</width>
<height>306</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>136</xmin>
<ymin>81</ymin>
<xmax>184</xmax>
<ymax>102</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000071.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>369</width>
<height>334</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>173</xmin>
<ymin>89</ymin>
<xmax>210</xmax>
<ymax>192</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000072.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>214</width>
<height>217</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>101</xmin>
<ymin>74</ymin>
<xmax>119</xmax>
<ymax>125</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000073.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>347</width>
<height>309</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>123</xmin>
<ymin>70</ymin>
<xmax>155</xmax>
<ymax>118</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000074.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>385</width>
<height>311</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>204</xmin>
<ymin>117</ymin>
<xmax>236</xmax>
<ymax>194</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000075.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>365</width>
<height>287</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>170</xmin>
<ymin>118</ymin>
<xmax>205</xmax>
<ymax>193</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000076.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>438</width>
<height>346</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>220</xmin>
<ymin>131</ymin>
<xmax>260</xmax>
<ymax>223</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000077.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>394</width>
<height>320</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>213</xmin>
<ymin>108</ymin>
<xmax>245</xmax>
<ymax>202</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000078.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>423</width>
<height>342</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>204</xmin>
<ymin>119</ymin>
<xmax>245</xmax>
<ymax>235</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,38 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000079.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>437</width>
<height>375</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>145</xmin>
<ymin>49</ymin>
<xmax>165</xmax>
<ymax>85</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>320</xmin>
<ymin>257</ymin>
<xmax>344</xmax>
<ymax>295</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000080.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>437</width>
<height>321</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>184</xmin>
<ymin>111</ymin>
<xmax>230</xmax>
<ymax>207</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000081.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>396</width>
<height>329</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>167</xmin>
<ymin>91</ymin>
<xmax>242</xmax>
<ymax>241</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,50 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000082.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>414</width>
<height>376</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>76</xmin>
<ymin>255</ymin>
<xmax>117</xmax>
<ymax>316</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>295</xmin>
<ymin>20</ymin>
<xmax>319</xmax>
<ymax>81</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>245</xmin>
<ymin>343</ymin>
<xmax>258</xmax>
<ymax>360</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,50 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000083.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>411</width>
<height>421</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>34</xmin>
<ymin>158</ymin>
<xmax>59</xmax>
<ymax>198</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>206</xmin>
<ymin>366</ymin>
<xmax>234</xmax>
<ymax>408</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>363</xmin>
<ymin>37</ymin>
<xmax>387</xmax>
<ymax>82</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000084.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>401</width>
<height>310</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>149</xmin>
<ymin>93</ymin>
<xmax>220</xmax>
<ymax>116</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000085.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>391</width>
<height>285</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>166</xmin>
<ymin>96</ymin>
<xmax>182</xmax>
<ymax>111</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000086.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>389</width>
<height>287</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>161</xmin>
<ymin>88</ymin>
<xmax>197</xmax>
<ymax>102</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000087.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>388</width>
<height>300</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>150</xmin>
<ymin>172</ymin>
<xmax>216</xmax>
<ymax>197</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,26 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000088.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>303</width>
<height>190</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>72</xmin>
<ymin>62</ymin>
<xmax>136</xmax>
<ymax>90</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,74 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000089.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>348</width>
<height>281</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>82</xmin>
<ymin>212</ymin>
<xmax>92</xmax>
<ymax>233</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>97</xmin>
<ymin>118</ymin>
<xmax>107</xmax>
<ymax>137</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>125</xmin>
<ymin>64</ymin>
<xmax>136</xmax>
<ymax>83</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>261</xmin>
<ymin>72</ymin>
<xmax>272</xmax>
<ymax>97</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>286</xmin>
<ymin>159</ymin>
<xmax>301</xmax>
<ymax>182</ymax>
</bndbox>
</object>
</annotation>

View File

@ -0,0 +1,50 @@
<?xml version="1.0" ?><annotation verified="no">
<folder>JPEGImages</folder>
<filename>000090.jpg</filename>
<path>K:\newmodel\SARShip\dataset\Annotations</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>362</width>
<height>309</height>
<depth>1</depth>
</size>
<segmented>0</segmented>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>96</xmin>
<ymin>143</ymin>
<xmax>106</xmax>
<ymax>167</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>121</xmin>
<ymin>231</ymin>
<xmax>137</xmax>
<ymax>255</ymax>
</bndbox>
</object>
<object>
<name>ship</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>240</xmin>
<ymin>41</ymin>
<xmax>268</xmax>
<ymax>72</ymax>
</bndbox>
</object>
</annotation>

Some files were not shown because too many files have changed in this diff Show More