22 lines
1.0 KiB
Python
22 lines
1.0 KiB
Python
import warnings
|
||
warnings.filterwarnings('ignore')
|
||
from ultralytics import YOLO
|
||
|
||
# BILIBILI UP 魔傀面具
|
||
# 验证参数官方详解链接:https://docs.ultralytics.com/modes/val/#usage-examples:~:text=of%20each%20category-,Arguments%20for%20YOLO%20Model%20Validation,-When%20validating%20YOLO
|
||
|
||
# 精度小数点保留位数修改问题可看<使用说明.md>下方的<YOLOV8源码常见疑问解答小课堂>第五点
|
||
# 最终论文的参数量和计算量统一以这个脚本运行出来的为准
|
||
|
||
if __name__ == '__main__':
|
||
model = YOLO('runs/train/exp/weights/best.pt') # 选择训练好的权重路径
|
||
model.val(data='/home/hjj/Desktop/dataset/dataset_visdrone/data.yaml',
|
||
split='val', # split可以选择train、val、test 根据自己的数据集情况来选择.
|
||
imgsz=640,
|
||
batch=16,
|
||
# iou=0.7,
|
||
# rect=False,
|
||
# save_json=True, # if you need to cal coco metrice
|
||
project='runs/val',
|
||
name='exp',
|
||
) |