ultralytics/ultralytics/cfg/__init__.py
2025-03-01 18:30:01 +08:00

730 lines
26 KiB
Python

# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import shutil
import subprocess
import sys
from pathlib import Path
from types import SimpleNamespace
from typing import Dict, List, Union
from ultralytics.utils import (
ASSETS,
DEFAULT_CFG,
DEFAULT_CFG_DICT,
DEFAULT_CFG_PATH,
LOGGER,
RANK,
ROOT,
RUNS_DIR,
SETTINGS,
SETTINGS_YAML,
TESTS_RUNNING,
IterableSimpleNamespace,
__version__,
checks,
colorstr,
deprecation_warn,
yaml_load,
yaml_print,
)
# Define valid tasks and modes
MODES = {"train", "val", "predict", "export", "track", "benchmark"}
TASKS = {"detect", "segment", "classify", "pose", "obb" ,"MTL"}
TASK2DATA = {
"detect": "coco8.yaml",
"segment": "coco8-seg.yaml",
"classify": "imagenet10",
"pose": "coco8-pose.yaml",
"obb": "dota8.yaml",
"MTL": "imagenet10"
}
TASK2MODEL = {
"detect": "yolov8n.pt",
"segment": "yolov8n-seg.pt",
"classify": "yolov8n-cls.pt",
"pose": "yolov8n-pose.pt",
"obb": "yolov8n-obb.pt",
"MTL": "yolov8n-cls.pt"
}
TASK2METRIC = {
"detect": "metrics/mAP50-95(B)",
"segment": "metrics/mAP50-95(M)",
"classify": "metrics/accuracy_top1",
"pose": "metrics/mAP50-95(P)",
"obb": "metrics/mAP50-95(B)",
}
MODELS = {TASK2MODEL[task] for task in TASKS}
ARGV = sys.argv or ["", ""] # sometimes sys.argv = []
CLI_HELP_MSG = f"""
Arguments received: {str(['yolo'] + ARGV[1:])}. Ultralytics 'yolo' commands use the following syntax:
yolo TASK MODE ARGS
Where TASK (optional) is one of {TASKS}
MODE (required) is one of {MODES}
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
1. Train a detection model for 10 epochs with an initial learning_rate of 0.01
yolo train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01
2. Predict a YouTube video using a pretrained segmentation model at image size 320:
yolo predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
3. Val a pretrained detection model at batch-size 1 and image size 640:
yolo val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640
4. Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
5. Explore your datasets using semantic search and SQL with a simple GUI powered by Ultralytics Explorer API
yolo explorer
6. Streamlit real-time object detection on your webcam with Ultralytics YOLOv8
yolo streamlit-predict
7. Run special commands:
yolo help
yolo checks
yolo version
yolo settings
yolo copy-cfg
yolo cfg
Docs: https://docs.ultralytics.com
Community: https://community.ultralytics.com
GitHub: https://github.com/ultralytics/ultralytics
"""
# Define keys for arg type checks
CFG_FLOAT_KEYS = { # integer or float arguments, i.e. x=2 and x=2.0
"warmup_epochs",
"box",
"cls",
"dfl",
"degrees",
"shear",
"time",
"workspace",
"batch",
}
CFG_FRACTION_KEYS = { # fractional float arguments with 0.0<=values<=1.0
"dropout",
"lr0",
"lrf",
"momentum",
"weight_decay",
"warmup_momentum",
"warmup_bias_lr",
"label_smoothing",
"hsv_h",
"hsv_s",
"hsv_v",
"translate",
"scale",
"perspective",
"flipud",
"fliplr",
"bgr",
"mosaic",
"mixup",
"copy_paste",
"conf",
"iou",
"fraction",
}
CFG_INT_KEYS = { # integer-only arguments
"epochs",
"patience",
"workers",
"seed",
"close_mosaic",
"mask_ratio",
"max_det",
"vid_stride",
"line_width",
"nbs",
"save_period",
}
CFG_BOOL_KEYS = { # boolean-only arguments
"save",
"exist_ok",
"verbose",
"deterministic",
"single_cls",
"rect",
"cos_lr",
"overlap_mask",
"val",
"save_json",
"save_hybrid",
"half",
"dnn",
"plots",
"show",
"save_txt",
"save_conf",
"save_crop",
"save_frames",
"show_labels",
"show_conf",
"visualize",
"augment",
"agnostic_nms",
"retina_masks",
"show_boxes",
"keras",
"optimize",
"int8",
"dynamic",
"simplify",
"nms",
"profile",
"multi_scale",
}
def cfg2dict(cfg):
"""
Convert a configuration object to a dictionary, whether it is a file path, a string, or a SimpleNamespace object.
Args:
cfg (str | Path | dict | SimpleNamespace): Configuration object to be converted to a dictionary. This may be a
path to a configuration file, a dictionary, or a SimpleNamespace object.
Returns:
(dict): Configuration object in dictionary format.
Example:
```python
from ultralytics.cfg import cfg2dict
from types import SimpleNamespace
# Example usage with a file path
config_dict = cfg2dict('config.yaml')
# Example usage with a SimpleNamespace
config_sn = SimpleNamespace(param1='value1', param2='value2')
config_dict = cfg2dict(config_sn)
# Example usage with a dictionary (returns the same dictionary)
config_dict = cfg2dict({'param1': 'value1', 'param2': 'value2'})
```
Notes:
- If `cfg` is a path or a string, it will be loaded as YAML and converted to a dictionary.
- If `cfg` is a SimpleNamespace object, it will be converted to a dictionary using `vars()`.
"""
if isinstance(cfg, (str, Path)):
cfg = yaml_load(cfg) # load dict
elif isinstance(cfg, SimpleNamespace):
cfg = vars(cfg) # convert to dict
return cfg
def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT, overrides: Dict = None):
"""
Load and merge configuration data from a file or dictionary, with optional overrides.
Args:
cfg (str | Path | dict | SimpleNamespace, optional): Configuration data source. Defaults to `DEFAULT_CFG_DICT`.
overrides (dict | None, optional): Dictionary containing key-value pairs to override the base configuration.
Defaults to None.
Returns:
(SimpleNamespace): Namespace containing the merged training arguments.
Notes:
- If both `cfg` and `overrides` are provided, the values in `overrides` will take precedence.
- Special handling ensures alignment and correctness of the configuration, such as converting numeric `project`
and `name` to strings and validating the configuration keys and values.
Example:
```python
from ultralytics.cfg import get_cfg
# Load default configuration
config = get_cfg()
# Load from a custom file with overrides
config = get_cfg('path/to/config.yaml', overrides={'epochs': 50, 'batch_size': 16})
```
Configuration dictionary merged with overrides:
```python
{'epochs': 50, 'batch_size': 16, ...}
```
"""
cfg = cfg2dict(cfg)
# Merge overrides
if overrides:
overrides = cfg2dict(overrides)
if "save_dir" not in cfg:
overrides.pop("save_dir", None) # special override keys to ignore
check_dict_alignment(cfg, overrides)
cfg = {**cfg, **overrides} # merge cfg and overrides dicts (prefer overrides)
# Special handling for numeric project/name
for k in "project", "name":
if k in cfg and isinstance(cfg[k], (int, float)):
cfg[k] = str(cfg[k])
if cfg.get("name") == "model": # assign model to 'name' arg
cfg["name"] = cfg.get("model", "").split(".")[0]
LOGGER.warning(f"WARNING ⚠️ 'name=model' automatically updated to 'name={cfg['name']}'.")
# Type and Value checks
check_cfg(cfg)
# Return instance
return IterableSimpleNamespace(**cfg)
def check_cfg(cfg, hard=True):
"""Validate Ultralytics configuration argument types and values, converting them if necessary."""
for k, v in cfg.items():
if v is not None: # None values may be from optional args
if k in CFG_FLOAT_KEYS and not isinstance(v, (int, float)):
if hard:
raise TypeError(
f"'{k}={v}' is of invalid type {type(v).__name__}. "
f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')"
)
cfg[k] = float(v)
elif k in CFG_FRACTION_KEYS:
if not isinstance(v, (int, float)):
if hard:
raise TypeError(
f"'{k}={v}' is of invalid type {type(v).__name__}. "
f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')"
)
cfg[k] = v = float(v)
if not (0.0 <= v <= 1.0):
raise ValueError(f"'{k}={v}' is an invalid value. " f"Valid '{k}' values are between 0.0 and 1.0.")
elif k in CFG_INT_KEYS and not isinstance(v, int):
if hard:
raise TypeError(
f"'{k}={v}' is of invalid type {type(v).__name__}. " f"'{k}' must be an int (i.e. '{k}=8')"
)
cfg[k] = int(v)
elif k in CFG_BOOL_KEYS and not isinstance(v, bool):
if hard:
raise TypeError(
f"'{k}={v}' is of invalid type {type(v).__name__}. "
f"'{k}' must be a bool (i.e. '{k}=True' or '{k}=False')"
)
cfg[k] = bool(v)
def get_save_dir(args, name=None):
"""Returns the directory path for saving outputs, derived from arguments or default settings."""
if getattr(args, "save_dir", None):
save_dir = args.save_dir
else:
from ultralytics.utils.files import increment_path
project = args.project or (ROOT.parent / "tests/tmp/runs" if TESTS_RUNNING else RUNS_DIR) / args.task
name = name or args.name or f"{args.mode}"
save_dir = increment_path(Path(project) / name, exist_ok=args.exist_ok if RANK in {-1, 0} else True)
return Path(save_dir)
def _handle_deprecation(custom):
"""Handles deprecated configuration keys by mapping them to current equivalents with deprecation warnings."""
for key in custom.copy().keys():
if key == "boxes":
deprecation_warn(key, "show_boxes")
custom["show_boxes"] = custom.pop("boxes")
if key == "hide_labels":
deprecation_warn(key, "show_labels")
custom["show_labels"] = custom.pop("hide_labels") == "False"
if key == "hide_conf":
deprecation_warn(key, "show_conf")
custom["show_conf"] = custom.pop("hide_conf") == "False"
if key == "line_thickness":
deprecation_warn(key, "line_width")
custom["line_width"] = custom.pop("line_thickness")
return custom
def check_dict_alignment(base: Dict, custom: Dict, e=None):
"""
Check for key alignment between custom and base configuration dictionaries, catering for deprecated keys and
providing informative error messages for mismatched keys.
Args:
base (dict): The base configuration dictionary containing valid keys.
custom (dict): The custom configuration dictionary to be checked for alignment.
e (Exception, optional): An optional error instance passed by the calling function. Default is None.
Raises:
SystemExit: Terminates the program execution if mismatched keys are found.
Notes:
- The function provides suggestions for mismatched keys based on their similarity to valid keys in the
base configuration.
- Deprecated keys in the custom configuration are automatically handled and replaced with their updated
equivalents.
- A detailed error message is printed for each mismatched key, helping users to quickly identify and correct
their custom configurations.
Example:
```python
base_cfg = {'epochs': 50, 'lr0': 0.01, 'batch_size': 16}
custom_cfg = {'epoch': 100, 'lr': 0.02, 'batch_size': 32}
try:
check_dict_alignment(base_cfg, custom_cfg)
except SystemExit:
# Handle the error or correct the configuration
```
"""
custom = _handle_deprecation(custom)
base_keys, custom_keys = (set(x.keys()) for x in (base, custom))
mismatched = [k for k in custom_keys if k not in base_keys]
if mismatched:
from difflib import get_close_matches
string = ""
for x in mismatched:
matches = get_close_matches(x, base_keys) # key list
matches = [f"{k}={base[k]}" if base.get(k) is not None else k for k in matches]
match_str = f"Similar arguments are i.e. {matches}." if matches else ""
string += f"'{colorstr('red', 'bold', x)}' is not a valid YOLO argument. {match_str}\n"
raise SyntaxError(string + CLI_HELP_MSG) from e
def merge_equals_args(args: List[str]) -> List[str]:
"""
Merges arguments around isolated '=' args in a list of strings. The function considers cases where the first
argument ends with '=' or the second starts with '=', as well as when the middle one is an equals sign.
Args:
args (List[str]): A list of strings where each element is an argument.
Returns:
(List[str]): A list of strings where the arguments around isolated '=' are merged.
Example:
The function modifies the argument list as follows:
```python
args = ["arg1", "=", "value"]
new_args = merge_equals_args(args)
print(new_args) # Output: ["arg1=value"]
args = ["arg1=", "value"]
new_args = merge_equals_args(args)
print(new_args) # Output: ["arg1=value"]
args = ["arg1", "=value"]
new_args = merge_equals_args(args)
print(new_args) # Output: ["arg1=value"]
```
"""
new_args = []
for i, arg in enumerate(args):
if arg == "=" and 0 < i < len(args) - 1: # merge ['arg', '=', 'val']
new_args[-1] += f"={args[i + 1]}"
del args[i + 1]
elif arg.endswith("=") and i < len(args) - 1 and "=" not in args[i + 1]: # merge ['arg=', 'val']
new_args.append(f"{arg}{args[i + 1]}")
del args[i + 1]
elif arg.startswith("=") and i > 0: # merge ['arg', '=val']
new_args[-1] += arg
else:
new_args.append(arg)
return new_args
def handle_yolo_hub(args: List[str]) -> None:
"""
Handle Ultralytics HUB command-line interface (CLI) commands.
This function processes Ultralytics HUB CLI commands such as login and logout. It should be called when executing
a script with arguments related to HUB authentication.
Args:
args (List[str]): A list of command line arguments.
Returns:
None
Example:
```bash
yolo hub login YOUR_API_KEY
```
"""
from ultralytics import hub
if args[0] == "login":
key = args[1] if len(args) > 1 else ""
# Log in to Ultralytics HUB using the provided API key
hub.login(key)
elif args[0] == "logout":
# Log out from Ultralytics HUB
hub.logout()
def handle_yolo_settings(args: List[str]) -> None:
"""
Handle YOLO settings command-line interface (CLI) commands.
This function processes YOLO settings CLI commands such as reset. It should be called when executing a script with
arguments related to YOLO settings management.
Args:
args (List[str]): A list of command line arguments for YOLO settings management.
Returns:
None
Example:
```bash
yolo settings reset
```
Notes:
For more information on handling YOLO settings, visit:
https://docs.ultralytics.com/quickstart/#ultralytics-settings
"""
url = "https://docs.ultralytics.com/quickstart/#ultralytics-settings" # help URL
try:
if any(args):
if args[0] == "reset":
SETTINGS_YAML.unlink() # delete the settings file
SETTINGS.reset() # create new settings
LOGGER.info("Settings reset successfully") # inform the user that settings have been reset
else: # save a new setting
new = dict(parse_key_value_pair(a) for a in args)
check_dict_alignment(SETTINGS, new)
SETTINGS.update(new)
LOGGER.info(f"💡 Learn about settings at {url}")
yaml_print(SETTINGS_YAML) # print the current settings
except Exception as e:
LOGGER.warning(f"WARNING ⚠️ settings error: '{e}'. Please see {url} for help.")
def handle_explorer():
"""Open the Ultralytics Explorer GUI for dataset exploration and analysis."""
checks.check_requirements("streamlit")
LOGGER.info("💡 Loading Explorer dashboard...")
subprocess.run(["streamlit", "run", ROOT / "data/explorer/gui/dash.py", "--server.maxMessageSize", "2048"])
def handle_streamlit_inference():
"""Open the Ultralytics Live Inference streamlit app for real time object detection."""
checks.check_requirements(["streamlit", "opencv-python", "torch"])
LOGGER.info("💡 Loading Ultralytics Live Inference app...")
subprocess.run(["streamlit", "run", ROOT / "solutions/streamlit_inference.py", "--server.headless", "true"])
def parse_key_value_pair(pair):
"""Parse one 'key=value' pair and return key and value."""
k, v = pair.split("=", 1) # split on first '=' sign
k, v = k.strip(), v.strip() # remove spaces
assert v, f"missing '{k}' value"
return k, smart_value(v)
def smart_value(v):
"""Convert a string to its appropriate type (int, float, bool, None, etc.)."""
v_lower = v.lower()
if v_lower == "none":
return None
elif v_lower == "true":
return True
elif v_lower == "false":
return False
else:
with contextlib.suppress(Exception):
return eval(v)
return v
def entrypoint(debug=""):
"""
Ultralytics entrypoint function for parsing and executing command-line arguments.
This function serves as the main entry point for the Ultralytics CLI, parsing command-line arguments and
executing the corresponding tasks such as training, validation, prediction, exporting models, and more.
Args:
debug (str, optional): Space-separated string of command-line arguments for debugging purposes. Default is "".
Returns:
(None): This function does not return any value.
Notes:
- For a list of all available commands and their arguments, see the provided help messages and the Ultralytics
documentation at https://docs.ultralytics.com.
- If no arguments are passed, the function will display the usage help message.
Example:
```python
# Train a detection model for 10 epochs with an initial learning_rate of 0.01
entrypoint("train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01")
# Predict a YouTube video using a pretrained segmentation model at image size 320
entrypoint("predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320")
# Validate a pretrained detection model at batch-size 1 and image size 640
entrypoint("val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640")
```
"""
args = (debug.split(" ") if debug else ARGV)[1:]
if not args: # no arguments passed
LOGGER.info(CLI_HELP_MSG)
return
special = {
"help": lambda: LOGGER.info(CLI_HELP_MSG),
"checks": checks.collect_system_info,
"version": lambda: LOGGER.info(__version__),
"settings": lambda: handle_yolo_settings(args[1:]),
"cfg": lambda: yaml_print(DEFAULT_CFG_PATH),
"hub": lambda: handle_yolo_hub(args[1:]),
"login": lambda: handle_yolo_hub(args),
"copy-cfg": copy_default_cfg,
"explorer": lambda: handle_explorer(),
"streamlit-predict": lambda: handle_streamlit_inference(),
}
full_args_dict = {**DEFAULT_CFG_DICT, **{k: None for k in TASKS}, **{k: None for k in MODES}, **special}
# Define common misuses of special commands, i.e. -h, -help, --help
special.update({k[0]: v for k, v in special.items()}) # singular
special.update({k[:-1]: v for k, v in special.items() if len(k) > 1 and k.endswith("s")}) # singular
special = {**special, **{f"-{k}": v for k, v in special.items()}, **{f"--{k}": v for k, v in special.items()}}
overrides = {} # basic overrides, i.e. imgsz=320
for a in merge_equals_args(args): # merge spaces around '=' sign
if a.startswith("--"):
LOGGER.warning(f"WARNING ⚠️ argument '{a}' does not require leading dashes '--', updating to '{a[2:]}'.")
a = a[2:]
if a.endswith(","):
LOGGER.warning(f"WARNING ⚠️ argument '{a}' does not require trailing comma ',', updating to '{a[:-1]}'.")
a = a[:-1]
if "=" in a:
try:
k, v = parse_key_value_pair(a)
if k == "cfg" and v is not None: # custom.yaml passed
LOGGER.info(f"Overriding {DEFAULT_CFG_PATH} with {v}")
overrides = {k: val for k, val in yaml_load(checks.check_yaml(v)).items() if k != "cfg"}
else:
overrides[k] = v
except (NameError, SyntaxError, ValueError, AssertionError) as e:
check_dict_alignment(full_args_dict, {a: ""}, e)
elif a in TASKS:
overrides["task"] = a
elif a in MODES:
overrides["mode"] = a
elif a.lower() in special:
special[a.lower()]()
return
elif a in DEFAULT_CFG_DICT and isinstance(DEFAULT_CFG_DICT[a], bool):
overrides[a] = True # auto-True for default bool args, i.e. 'yolo show' sets show=True
elif a in DEFAULT_CFG_DICT:
raise SyntaxError(
f"'{colorstr('red', 'bold', a)}' is a valid YOLO argument but is missing an '=' sign "
f"to set its value, i.e. try '{a}={DEFAULT_CFG_DICT[a]}'\n{CLI_HELP_MSG}"
)
else:
check_dict_alignment(full_args_dict, {a: ""})
# Check keys
check_dict_alignment(full_args_dict, overrides)
# Mode
mode = overrides.get("mode")
if mode is None:
mode = DEFAULT_CFG.mode or "predict"
LOGGER.warning(f"WARNING ⚠️ 'mode' argument is missing. Valid modes are {MODES}. Using default 'mode={mode}'.")
elif mode not in MODES:
raise ValueError(f"Invalid 'mode={mode}'. Valid modes are {MODES}.\n{CLI_HELP_MSG}")
# Task
task = overrides.pop("task", None)
if task:
if task not in TASKS:
raise ValueError(f"Invalid 'task={task}'. Valid tasks are {TASKS}.\n{CLI_HELP_MSG}")
if "model" not in overrides:
overrides["model"] = TASK2MODEL[task]
# Model
model = overrides.pop("model", DEFAULT_CFG.model)
if model is None:
model = "yolov8n.pt"
LOGGER.warning(f"WARNING ⚠️ 'model' argument is missing. Using default 'model={model}'.")
overrides["model"] = model
stem = Path(model).stem.lower()
if "rtdetr" in stem: # guess architecture
from ultralytics import RTDETR
model = RTDETR(model) # no task argument
elif "fastsam" in stem:
from ultralytics import FastSAM
model = FastSAM(model)
elif "sam" in stem:
from ultralytics import SAM
model = SAM(model)
else:
from ultralytics import YOLO
model = YOLO(model, task=task)
if isinstance(overrides.get("pretrained"), str):
model.load(overrides["pretrained"])
# Task Update
if task != model.task:
if task:
LOGGER.warning(
f"WARNING ⚠️ conflicting 'task={task}' passed with 'task={model.task}' model. "
f"Ignoring 'task={task}' and updating to 'task={model.task}' to match model."
)
task = model.task
# Mode
if mode in {"predict", "track"} and "source" not in overrides:
overrides["source"] = DEFAULT_CFG.source or ASSETS
LOGGER.warning(f"WARNING ⚠️ 'source' argument is missing. Using default 'source={overrides['source']}'.")
elif mode in {"train", "val"}:
if "data" not in overrides and "resume" not in overrides:
overrides["data"] = DEFAULT_CFG.data or TASK2DATA.get(task or DEFAULT_CFG.task, DEFAULT_CFG.data)
LOGGER.warning(f"WARNING ⚠️ 'data' argument is missing. Using default 'data={overrides['data']}'.")
elif mode == "export":
if "format" not in overrides:
overrides["format"] = DEFAULT_CFG.format or "torchscript"
LOGGER.warning(f"WARNING ⚠️ 'format' argument is missing. Using default 'format={overrides['format']}'.")
# Run command in python
getattr(model, mode)(**overrides) # default args from model
# Show help
LOGGER.info(f"💡 Learn more at https://docs.ultralytics.com/modes/{mode}")
# Special modes --------------------------------------------------------------------------------------------------------
def copy_default_cfg():
"""Copy and create a new default configuration file with '_copy' appended to its name, providing usage example."""
new_file = Path.cwd() / DEFAULT_CFG_PATH.name.replace(".yaml", "_copy.yaml")
shutil.copy2(DEFAULT_CFG_PATH, new_file)
LOGGER.info(
f"{DEFAULT_CFG_PATH} copied to {new_file}\n"
f"Example YOLO command with this new custom cfg:\n yolo cfg='{new_file}' imgsz=320 batch=8"
)
if __name__ == "__main__":
# Example: entrypoint(debug='yolo predict model=yolov8n.pt')
entrypoint(debug="")