89 lines
3.4 KiB
Python
89 lines
3.4 KiB
Python
import os
|
||
import cv2
|
||
import json
|
||
from tqdm import tqdm
|
||
from sklearn.model_selection import train_test_split
|
||
import argparse
|
||
|
||
# visdrone2019
|
||
classes = ['pedestrain', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
|
||
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument('--image_path', default='',type=str, help="path of images")
|
||
parser.add_argument('--label_path', default='',type=str, help="path of labels .txt")
|
||
parser.add_argument('--save_path', default='data.json', type=str, help="if not split the dataset, give a path to a json file")
|
||
arg = parser.parse_args()
|
||
|
||
def yolo2coco(arg):
|
||
print("Loading data from ", arg.image_path, arg.label_path)
|
||
|
||
assert os.path.exists(arg.image_path)
|
||
assert os.path.exists(arg.label_path)
|
||
|
||
originImagesDir = arg.image_path
|
||
originLabelsDir = arg.label_path
|
||
# images dir name
|
||
indexes = os.listdir(originImagesDir)
|
||
|
||
dataset = {'categories': [], 'annotations': [], 'images': []}
|
||
for i, cls in enumerate(classes, 0):
|
||
dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'})
|
||
|
||
# 标注的id
|
||
ann_id_cnt = 0
|
||
for k, index in enumerate(tqdm(indexes)):
|
||
# 支持 png jpg 格式的图片.
|
||
txtFile = f'{index[:index.rfind(".")]}.txt'
|
||
stem = index[:index.rfind(".")]
|
||
# 读取图像的宽和高
|
||
try:
|
||
im = cv2.imread(os.path.join(originImagesDir, index))
|
||
height, width, _ = im.shape
|
||
except Exception as e:
|
||
print(f'{os.path.join(originImagesDir, index)} read error.\nerror:{e}')
|
||
# 添加图像的信息
|
||
if not os.path.exists(os.path.join(originLabelsDir, txtFile)):
|
||
# 如没标签,跳过,只保留图片信息.
|
||
continue
|
||
dataset['images'].append({'file_name': index,
|
||
'id': stem,
|
||
'width': width,
|
||
'height': height})
|
||
with open(os.path.join(originLabelsDir, txtFile), 'r') as fr:
|
||
labelList = fr.readlines()
|
||
for label in labelList:
|
||
label = label.strip().split()
|
||
x = float(label[1])
|
||
y = float(label[2])
|
||
w = float(label[3])
|
||
h = float(label[4])
|
||
|
||
# convert x,y,w,h to x1,y1,x2,y2
|
||
H, W, _ = im.shape
|
||
x1 = (x - w / 2) * W
|
||
y1 = (y - h / 2) * H
|
||
x2 = (x + w / 2) * W
|
||
y2 = (y + h / 2) * H
|
||
# 标签序号从0开始计算, coco2017数据集标号混乱,不管它了。
|
||
cls_id = int(label[0])
|
||
width = max(0, x2 - x1)
|
||
height = max(0, y2 - y1)
|
||
dataset['annotations'].append({
|
||
'area': width * height,
|
||
'bbox': [x1, y1, width, height],
|
||
'category_id': cls_id,
|
||
'id': ann_id_cnt,
|
||
'image_id': stem,
|
||
'iscrowd': 0,
|
||
# mask, 矩形是从左上角点按顺时针的四个顶点
|
||
'segmentation': [[x1, y1, x2, y1, x2, y2, x1, y2]]
|
||
})
|
||
ann_id_cnt += 1
|
||
|
||
# 保存结果
|
||
with open(arg.save_path, 'w') as f:
|
||
json.dump(dataset, f)
|
||
print('Save annotation to {}'.format(arg.save_path))
|
||
|
||
if __name__ == "__main__":
|
||
yolo2coco(arg) |