89 lines
3.4 KiB
Python
89 lines
3.4 KiB
Python
![]() |
import os
|
|||
|
import cv2
|
|||
|
import json
|
|||
|
from tqdm import tqdm
|
|||
|
from sklearn.model_selection import train_test_split
|
|||
|
import argparse
|
|||
|
|
|||
|
# visdrone2019
|
|||
|
classes = ['pedestrain', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
|
|||
|
|
|||
|
parser = argparse.ArgumentParser()
|
|||
|
parser.add_argument('--image_path', default='',type=str, help="path of images")
|
|||
|
parser.add_argument('--label_path', default='',type=str, help="path of labels .txt")
|
|||
|
parser.add_argument('--save_path', default='data.json', type=str, help="if not split the dataset, give a path to a json file")
|
|||
|
arg = parser.parse_args()
|
|||
|
|
|||
|
def yolo2coco(arg):
|
|||
|
print("Loading data from ", arg.image_path, arg.label_path)
|
|||
|
|
|||
|
assert os.path.exists(arg.image_path)
|
|||
|
assert os.path.exists(arg.label_path)
|
|||
|
|
|||
|
originImagesDir = arg.image_path
|
|||
|
originLabelsDir = arg.label_path
|
|||
|
# images dir name
|
|||
|
indexes = os.listdir(originImagesDir)
|
|||
|
|
|||
|
dataset = {'categories': [], 'annotations': [], 'images': []}
|
|||
|
for i, cls in enumerate(classes, 0):
|
|||
|
dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'})
|
|||
|
|
|||
|
# 标注的id
|
|||
|
ann_id_cnt = 0
|
|||
|
for k, index in enumerate(tqdm(indexes)):
|
|||
|
# 支持 png jpg 格式的图片.
|
|||
|
txtFile = f'{index[:index.rfind(".")]}.txt'
|
|||
|
stem = index[:index.rfind(".")]
|
|||
|
# 读取图像的宽和高
|
|||
|
try:
|
|||
|
im = cv2.imread(os.path.join(originImagesDir, index))
|
|||
|
height, width, _ = im.shape
|
|||
|
except Exception as e:
|
|||
|
print(f'{os.path.join(originImagesDir, index)} read error.\nerror:{e}')
|
|||
|
# 添加图像的信息
|
|||
|
if not os.path.exists(os.path.join(originLabelsDir, txtFile)):
|
|||
|
# 如没标签,跳过,只保留图片信息.
|
|||
|
continue
|
|||
|
dataset['images'].append({'file_name': index,
|
|||
|
'id': stem,
|
|||
|
'width': width,
|
|||
|
'height': height})
|
|||
|
with open(os.path.join(originLabelsDir, txtFile), 'r') as fr:
|
|||
|
labelList = fr.readlines()
|
|||
|
for label in labelList:
|
|||
|
label = label.strip().split()
|
|||
|
x = float(label[1])
|
|||
|
y = float(label[2])
|
|||
|
w = float(label[3])
|
|||
|
h = float(label[4])
|
|||
|
|
|||
|
# convert x,y,w,h to x1,y1,x2,y2
|
|||
|
H, W, _ = im.shape
|
|||
|
x1 = (x - w / 2) * W
|
|||
|
y1 = (y - h / 2) * H
|
|||
|
x2 = (x + w / 2) * W
|
|||
|
y2 = (y + h / 2) * H
|
|||
|
# 标签序号从0开始计算, coco2017数据集标号混乱,不管它了。
|
|||
|
cls_id = int(label[0])
|
|||
|
width = max(0, x2 - x1)
|
|||
|
height = max(0, y2 - y1)
|
|||
|
dataset['annotations'].append({
|
|||
|
'area': width * height,
|
|||
|
'bbox': [x1, y1, width, height],
|
|||
|
'category_id': cls_id,
|
|||
|
'id': ann_id_cnt,
|
|||
|
'image_id': stem,
|
|||
|
'iscrowd': 0,
|
|||
|
# mask, 矩形是从左上角点按顺时针的四个顶点
|
|||
|
'segmentation': [[x1, y1, x2, y1, x2, y2, x1, y2]]
|
|||
|
})
|
|||
|
ann_id_cnt += 1
|
|||
|
|
|||
|
# 保存结果
|
|||
|
with open(arg.save_path, 'w') as f:
|
|||
|
json.dump(dataset, f)
|
|||
|
print('Save annotation to {}'.format(arg.save_path))
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
yolo2coco(arg)
|