ultralytics/dataset/yolo2coco.py
2025-02-25 11:58:34 +08:00

89 lines
3.4 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import cv2
import json
from tqdm import tqdm
from sklearn.model_selection import train_test_split
import argparse
# visdrone2019
classes = ['pedestrain', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
parser = argparse.ArgumentParser()
parser.add_argument('--image_path', default='',type=str, help="path of images")
parser.add_argument('--label_path', default='',type=str, help="path of labels .txt")
parser.add_argument('--save_path', default='data.json', type=str, help="if not split the dataset, give a path to a json file")
arg = parser.parse_args()
def yolo2coco(arg):
print("Loading data from ", arg.image_path, arg.label_path)
assert os.path.exists(arg.image_path)
assert os.path.exists(arg.label_path)
originImagesDir = arg.image_path
originLabelsDir = arg.label_path
# images dir name
indexes = os.listdir(originImagesDir)
dataset = {'categories': [], 'annotations': [], 'images': []}
for i, cls in enumerate(classes, 0):
dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'})
# 标注的id
ann_id_cnt = 0
for k, index in enumerate(tqdm(indexes)):
# 支持 png jpg 格式的图片.
txtFile = f'{index[:index.rfind(".")]}.txt'
stem = index[:index.rfind(".")]
# 读取图像的宽和高
try:
im = cv2.imread(os.path.join(originImagesDir, index))
height, width, _ = im.shape
except Exception as e:
print(f'{os.path.join(originImagesDir, index)} read error.\nerror:{e}')
# 添加图像的信息
if not os.path.exists(os.path.join(originLabelsDir, txtFile)):
# 如没标签,跳过,只保留图片信息.
continue
dataset['images'].append({'file_name': index,
'id': stem,
'width': width,
'height': height})
with open(os.path.join(originLabelsDir, txtFile), 'r') as fr:
labelList = fr.readlines()
for label in labelList:
label = label.strip().split()
x = float(label[1])
y = float(label[2])
w = float(label[3])
h = float(label[4])
# convert x,y,w,h to x1,y1,x2,y2
H, W, _ = im.shape
x1 = (x - w / 2) * W
y1 = (y - h / 2) * H
x2 = (x + w / 2) * W
y2 = (y + h / 2) * H
# 标签序号从0开始计算, coco2017数据集标号混乱不管它了。
cls_id = int(label[0])
width = max(0, x2 - x1)
height = max(0, y2 - y1)
dataset['annotations'].append({
'area': width * height,
'bbox': [x1, y1, width, height],
'category_id': cls_id,
'id': ann_id_cnt,
'image_id': stem,
'iscrowd': 0,
# mask, 矩形是从左上角点按顺时针的四个顶点
'segmentation': [[x1, y1, x2, y1, x2, y2, x1, y2]]
})
ann_id_cnt += 1
# 保存结果
with open(arg.save_path, 'w') as f:
json.dump(dataset, f)
print('Save annotation to {}'.format(arg.save_path))
if __name__ == "__main__":
yolo2coco(arg)