ultralytics/LOSS改进系列.md
2025-02-25 11:58:34 +08:00

31 lines
2.0 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Loss系列
1. SlideLoss,EMASlideLoss.(可动态调节正负样本的系数,让模型更加注重难分类,错误分类的样本上)[Yolo-Face V2](https://github.com/Krasjet-Yu/YOLO-FaceV2/blob/master/utils/loss.py)
在ultralytics/utils/loss.py中的class v8DetectionLoss进行设定.(支持v8-detect、v8-seg、v8-pose、v10)
EMASlideLoss具体思想可以参考https://www.bilibili.com/video/BV1W14y1i79U/?vd_source=c8452371e7ca510979593165c8d7ac27
2. FocalLoss,VarifocalLoss,QualityfocalLoss(支持v8-detect、v8-seg、v8-pose、v8-obb、v10)
项目视频百度云链接-20240111版本更新说明.
3. Normalized Gaussian Wasserstein Distance(支持v8-detect、v8-seg、v8-pose、v10)[论文链接](https://arxiv.org/abs/2110.13389)
在Loss中使用:
在ultralytics/utils/loss.py中的BboxLoss class中的__init__函数里面设置self.nwd_loss为True.
比例系数调整self.iou_ratio, self.iou_ratio代表iou的占比,(1-self.iou_ratio)为代表nwd的占比.
在TAL标签分配中使用:
在ultralytics/utils/tal.py中的def iou_calculation函数中进行更换即可.
以上这两可以配合使用,也可以单独使用.
4. 定位损失系列(支持v8-detect、v8-seg、v8-pose、v10)
1. IoU,GIoU,DIoU,CIoU,EIoU,SIoU,MPDIoU,ShapeIoU.
2. Inner-IoU,Inner-GIoU,Inner-DIoU,Inner-CIoU,Inner-EIoU,Inner-SIoU,Inner-ShapeIoU,Inner-MPDIoU.
3. Focaler-IoU系列(IoU,GIoU,DIoU,CIoU,EIoU,SIoU,WIoU,MPDIoU,ShapeIoU)
4. Powerful-IoU,Powerful-IoUV2,Inner-Powerful-IoU,Inner-Powerful-IoUV2,Focaler-Powerful-IoU,Focaler-Powerful-IoUV2[论文链接](https://www.sciencedirect.com/science/article/abs/pii/S0893608023006640)
项目视频百度云链接-定位损失系列更换说明
1. Wise-IoU(v1,v2,v3)系列(IoU,WIoU,EIoU,GIoU,DIoU,CIoU,SIoU,MPDIoU,ShapeIoU,Powerful-IoU,Powerful-IoUV2).
2. Inner-Wise-IoU(v1,v2,v3)系列(IoU,WIoU,EIoU,GIoU,DIoU,CIoU,SIoU,MPDIoU,ShapeIoU,Powerful-IoU,Powerful-IoUV2).
项目视频百度云链接-20240111版本更新说明